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ABSTRACT We present the CPMA, a new method for medial axis pruning with noise robustness and
equivariance to isometric transformations. The CPMA leverages the discrete cosine transform to create
smooth versions of a shape �. We use the smooth shapes to compute a score function F� that filters out
spurious branches from the medial axis of the original shape �. Our method generalizes to n-dimensional
shapes given the properties of the Discrete Cosine Transform. We extensively compare with state-of-the-
art pruning methods to highlight the CPMA’s noise robustness and isometric equivariance. We conducted
experiments using two 2D datasets — Kimia216 and Animal2000 — and one 3D dataset — the Groningen
benchmark. We found that our pruning approach achieves competitive results and yields stable medial axes
even in scenarios with significant contour perturbations.

INDEX TERMS Discrete cosine transform, equivariance, isometric transformation, medial axis pruning,
morphological skeleton.

I. INTRODUCTION
Shape analysis arises naturally in computer vision applica-
tions where geometric information plays an essential role.
The shape of an object is a useful tool in fields such as:
non-destructive reconstruction of archaeology and cultural
heritage [1], [2]; object classification and retrieval from
large collections of images [3], [4]; human action and pose
recognition for gaming and entertainment [5], [6]; environ-
ment sensing in robot navigation and planning [7], [8]; and
industry for automatic visual quality inspection of product
defects [9], [10].

We visually perceive shape as the collections of all the fea-
tures that constitute an object. However, to perform computer-
based shape analysis, one must rely on an accurate discrete
mathematical representation of an object’s shape. This repre-
sentation should exhibit the same geometric and topological
properties inherent to the shape itself. Accordingly, we can
think of shape representation as a way to store the shape’s
information in a different format, which benefits speed, com-
pactness, and efficiency.

The associate editor coordinating the review of this manuscript and

approving it for publication was Li Zhang .

Many authors have proposed a variety of shape repre-
sentations such as voxel/pixel grids, point clouds, triangular
meshes, medial axis, or signed distance functions [11]–[15].
These representations differ greatly in their formulation, and
aim to provide a method for extracting descriptive features
from objects, while also preserving their appearance and
geometric properties [16]–[20]. However, these methods also
have disadvantages that limit their applications. For exam-
ple, medial axis representations are highly sensitive to con-
tour noise; voxel/pixel grids are inaccurate after isometric
transformations; and signed distance functions and triangular
meshes are memory-consuming representations when high-
frequency details of the shape want to be stored.

We focus this study on the medial axis, also called the
topological skeleton. The medial axis represents shapes as a
collection of one-dimensional curves that define the ‘‘back-
bone’’ of an object. It provides dimensionality reduction of
the amount of data needed to represent an entire shape while
preserving its topological structure. Moreover, the medial
axis is a rotation equivariant shape representation because
the medial axis of a rotated object should ideally be the
rotated medial axis of the same object. The medial axis is
also robust to small deformation, such as articulation, because
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of its graph-like structure. For instance, a human-like shape
moving only its arm will not affect all of the points in the
medial axis, only the connections between the arm’s nodes.

Despite its advantages, medial axis representations are
extremely sensitive to noise on the object’s contour [21], [22].
Even small amounts of noise can cause erroneous sections of
the skeleton called spurious branches. Consequently, many
medial axis extraction algorithms are equipped with a mech-
anism to avoid or remove these spurious branches. There are
two main mechanisms reported in the state-of-the-art to deal
with this problem: 1) prior smoothing of the curve repre-
senting the object’s boundary, and 2) pruning the spurious
branches after the medial axis’ computation. In the former,
the smoothed boundary is obtained by removing small struc-
tures along the curve or surface. It is interesting to note that
smoothing curves does not always result in a simplified skele-
ton [23], [24]. Effective pruning techniques focus instead
on criteria to evaluate the significance of individual medial
axis branches. However, pruning often requires user-defined
parameters that depend on the size and complexity of the
object [25]–[27], which makes the pruning method domain-
dependent. Moreover, some pruning strategies result in a
violation of the equivariant property [21], [22]. As a result,
medial axis pruning is still an open problem in computer
vision, and this problem is in need of noise-robust methods
that concurrently preserve the isometric equivariance of the
medial axis.

This paper presents a new method for medial axis prun-
ing that employs mechanisms from the two aforementioned
branch-removal strategies. Our method works by computing
a controlled set of smoothed versions of the original shape
via the discrete cosine transform (DCT). We combine these
smoothed shapes’ medial axis to create a score function that
rates points and branches by their degree of importance.
We use our score function to prune spurious branches while
preserving the medial axis’ ability to reconstruct the original
object. Our method is robust to boundary noise and exhibits
isometric equivariance.

We benchmark our approach on several datasets of 2D
and 3D segmented objects. We use the Kimia216 [28] and
Animal datasets [29] to evaluate 2D medial axis extraction.
These two datasets provide a method to assess 2Dmedial axis
extraction in the presence of intra-class variation. We also
use the University of Groningen Benchmark [30]–[32] to
evaluate our approach on 3D objects. Our experiments show
that our approach achieves competitive results on isometric
equivariance and noise robustness compared to the state-of-
the-art.

The main contributions of this paper are summarized as
follows:
• We define a novel method to compute medial axes
that are robust to several degrees of boundary noise
without losing the capacity to reconstruct the original
object.

• Our computation pipeline guarantees that the isometric
equivariance of the medial axis is preserved.

• The definition of our score function allows for a medial
axis pruning that is efficiently computed in parallel.

II. RELATED WORK
Many algorithms and strategies exist to extract the medial
axis and simplify it when affected by contour noise. This
section briefly reviews the most representative algorithms for
medial axis computation and discusses their key advantages
and disadvantages.

A. THE MEDIAL AXIS
Blum [33] first introduced the medial axis as an analogy of a
fire propagating with uniform velocity on a grass field. The
field is assumed to have the form of a given shape. If one
‘‘sets fire’’ at all boundary points, the medial axis is the set of
quench points.

There are other equivalent definitions of the medial axis.
In this work we use a geometric definition as follows:
Definition 1 (Medial Axis): Let � be a connected

bounded domain in Rn, and x, x ′ two points such that x, x ′ ∈
�. The medial axis of� is defined as all the points x where x
is the center of a maximal ball Br of radius r that is inscribed
inside �. Formally,

MA(�) =
{
x | Br (x) 6* Br ′ (x

′),∀r ′ > r
}
.

The medial axis, together with the associated radius of the
maximally inscribed ball, is called the medial axis transform
(MAT(�)). The MAT is a complete shape descriptor, mean-
ing that it can be used to reconstruct the shape of the original
domain. In some work, MA and MAT are also referred to
as shape skeletonization. Fig. 1 shows an example of a 2D
shape and its medial axis as the center of maximal discs.
In R3 definition 1 may result in a 2-dimensional medial axis
sometimes called the medial surface. We will restrict our
examples and analysis to only one-dimensional medial axes.

B. MEDIAL AXIS COMPUTATION
There are three primary mechanisms to compute the MA:
1) layer by layer morphological erosion or ‘‘thinning meth-
ods,’’ 2) extraction of the medial axis from the edges of the
Voronoi diagram (VD) generated by the boundary points, and
3) detection of ridges in the distance map generated by the
boundary points. In digital spaces, only an approximation to
the ‘‘true medial axis’’ can be extracted.

When using thinning methods [34]–[37], points which
belong to � are deleted from the outer boundary first. Later,
the deletion proceeds iteratively inside until it results in a
single-pixel wide medial axis. Medial axis extraction by thin-
ning can be approximated in terms of erosion and opening
morphological operations [38]. Thinning methods are easy
to implement in a discrete setting, but they are not robust to
isometric transformations.

The most well-known algorithm for thinning skeletoniza-
tion is perhaps the Zhang and Suen [38] algorithm. However,
other approaches have been developed using similar princi-
ples [36], [37], [39], mainly focused on parallel computation.
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FIGURE 1. Medial Axis Transform Computation. (Left) a shape and its
boundary. (Right) Medial Axis elements consisting of the centers and
radius of balls inscribed in the shape [7].

Another way to estimate the medial axis works by com-
puting the VD of a polygonal approximation of the object’s
contour. The contour is expressed as line segments in 2D or a
polygonal mesh in 3D. The seed points for the VD are the
vertices of the polygonal representation. The medial axis is
then computed as the union of all of the edges eij of the VD,
such that the points i, and j are not neighbors in the polygonal
approximation [40].

Voronoi skeletonization methods preserve the topology of
�. However, a suitable polygonal approximation of an object
is crucial to guarantee the medial axis’ accuracy. Noise in the
boundary forms convex areas in the contour, which induce
spurious branches on themedial axis. In general, the better the
polygonal approximation, the closer the Voronoi skeletonwill
be to the realMA. Nevertheless, this is an expensive process,
particularly for large and complex objects [22].

The most common methods to extract the medial axis
are those based on the Euclidean distance transform (EDT).
Within these methods, the medial axis is computed as the
ridges of the EDT inside the object [21], [41]–[46]. This
interpretation of the medial axis follows definition 1, because
the centers of the maximal balls are located on points x
along the ridgeline of the EDT, and the radius of the balls
correspond to the distance value at x.
When computed in a discrete framework, distance-based

approaches suffer from the same isometric robustness limita-
tions as thinning and Voronoi methods [22]. Moreover, noise
in the contour produced by a low discretization resolution
directly affects the medial axis’ computation by introducing
artificial ridges and, consequently, spurious branches.

FIGURE 2. (Left) Spurious branch in medial axis. (Right) A new branch
appears in the presence of a small perturbation in the contour [25].

C. MEDIAL AXIS SIMPLIFICATION
The medial axis’ sensitivity to boundary noise limits its
applications to real-life problems [47]. Even negligible
boundary noise can cause spurious branches, as shown
in Fig. 2.

One strategy for removal of spurious branches consists
of computing MA(�′) instead of MA(�). Here, �′ is a
smoothed version of � [48], [49]. The main disadvantage of
this approach is that, in most cases, the resulting medial axis
is not a good approximation. Additionally,�′ can potentially
change the topology of the original object. Miklos et al. [50]
introduced a slightly different approach they call Scaled Axis
Transform (SAT). The SAT involves scaling the EDT and
computing the medial axis of the original un-scaled shape
as the medial axis of the scaled one. However, in [45],
the authors show that the SAT is not necessarily a subset of
the medial axis of the original shape. In another work, [45]
propose the Scale Filtered Euclidean Medial Axis (SFEMA),
a solution to the stated problem with the SAT that guarantees
a better approximation by including additional constraints on
the scaled EDT.

Another method to overcome the noise sensitivity limita-
tion of the medial axis is spurious branch pruning. Pruning
methods are a family of regularization processes incorporated
into some medial axis extraction algorithms [25]. Effective
pruning techniques focus on different criteria to evaluate the
significance of medial axis branches. Thus, the algorithm
decides whether to remove the branch (and its points) or not.
We can say that pruning methods are adequate if the resulting
MA is noticeably simplified while preserving the topology
and its ability to reconstruct the original object. Most pruning
methods rely on ad hoc heuristic rules, which are invented
and often reinvented in a variety of equivalent application-
driven formulations [25]. Some authors apply these rules
while computing all medial axis points. Others do so by
removing branches that are considered useless after the com-
putation [22], [43], [51].

One of the most popular pruning methods is the Bisector
Euclidean Medial Axis (BEMA), which was introduced by
Couprie et al. [44]. They consider the angle θ formed by a
point x ∈ �, and its two closest boundary points denoted
by the set5�(x). This solution removes points from theMA
for which θ is lower than a constant threshold. This criterion
allows different scales within a shape but generally leads to
an unconnected medial axis.

Another pruning method found in the state-of-the-art is the
work of Hesselink and Roerdink [43]. They introduce the
Gamma Integer Medial Axis (GIMA), where a point belongs
to the medial axis if the distance between its two closest
boundary points is at least equal to γ .

Many pruning methods rely on the EDT, which we will
denote asD�(x) in the remaining of this document. For these
methods, D�(x) acts as a generator function for the medial
axis, such that points x ∈MA if and only if they satisfy some
constraint involving their distance to the boundary. However,
other authors have proposed alternative generator functions
in their pruning strategies [52], [53].

In [52] and [53], the authors introduce what they call
Poisson skeletons by approximatingD�(x) as the solution of
the Poisson equation with constant source function. Poisson
skeletons rely on a solid mathematical formulation. Among
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other concepts, they use the local minimums and maximums
of the curvature along δ�. However, when such methodology
is applied in a discrete environment, many spurious branches
appear due to the need to define the size of a kernel to estimate
these local extreme points.

III. METHOD
We propose a new pruning approach to remove spurious
branches from the medial axis of a n-dimensional closed
shape�. We call our method the Cosine-Pruned Medial Axis
(CPMA). The CPMA works by filtering out points from
the Euclidean Medial Axis MAT(�) with a score function
F�(x) : Nn

7→ [0, 1]. We define the function F� by aggre-
gating the medial axis of controlled smoothed versions of �.
Our formulation ofF� must yield high values at points x that
belong to the real medial axis (RMA) and low values at points
that belong to spurious branches. Additionally, we requireF�
to be equivariant to isometric transformations.

A. THE COSINE-PRUNED MEDIAL AXIS
Let us represent � as a square binary image I : N2

7→ {0, 1}
with a resolution ofM×M pixels.We start the computation of
the CPMA by estimating a set of smoothed versions of I via
the Discrete Cosine Transform (DCT) and its inverse (IDCT):

F(u, v)=
CuCv
4

M−1∑
x=0

M−1∑
y=0

I ·cos
(
uπ

2x+1
2M

)
·cos

(
vπ

2y+1
2M

)
(1)

I(x, y)=
M−1∑
u=0

M−1∑
v=0

CuCv
4

F·cos
(
uπ

2x+1
2M

)
·cos

(
vπ

2y+1
2M

)
.

(2)

where (u, v) are coordinates in the frequency domain, and
(x, y) are the spatial coordinates of the Euclidean space where
� is defined. The values of Cu and Cv are determined by:

Cu =


1
√
2

if u = 0

1 otherwise
Cv = (Similar to above)

The DCT is closely related to the discrete Fourier trans-
form of real valued-functions. However, it has better energy
compaction properties with only a few of the transform coef-
ficients representing the majority of the energy. Multidimen-
sional variants of the various DCT types follow directly from
the one-dimensional definition. They are simply a separable
product along each dimension.

Let us now denote by Î(i) with i = 1, 2, . . . ,M the recon-
structions of I using only the first i frequencies as per equa-
tion 2. We seek to obtain a score function F� acting as a sort
of probability indicating how likely it is for a point x to be in
the medial axis of �. Points on relevant branches will appear
regularly in the smoothed shapes’ medial axis, resulting in
high score function values. In contrast, spurious branches will
only appear occasionally, resulting in low values.

Definition 2 (Score Function): Let I : Nn
7→ {0, 1} be a

square binary image such that I(x) = 1 ∀x ∈ �. Let Î(i) also
be the i-frequency reconstruction of I via the IDCT.We define
F�(x) : Nn

7→ [0, 1] as the per pixel average over a set of
estimations of theMAT on the smoothed shapes I(i).

F�(x) =
1
M

M−1∑
i=0

[
MAT

(
Î(i)
)]

(x). (3)

The score function is defined for all x in the domain of I.
Notice that we represent the MAT as another binary image
where MAT(x) = 1 only when x belongs to the medial axis,
and 0 otherwise. Using F�, we finally have all the elements
to present our definition of the CPMA.
Definition 3 (Cosine-Pruned Medial Axis): Given a binary

image I : Nn
7→ {0, 1} representing a shape �,

the CPMA(�) consist of all the pairs (x, r) ∈MAT(�) such
that F�(x) is greater than a threshold τ :

[CPMA(�)] (x) =

{
1 F�(x) > τ

0 otherwise

We empirically set the value of the threshold to τ = 0.47.
However, we conducted an additional experiment to show
that this value is consistent across different shapes.

Although the CPMA results in a noise-free MA, there is
no restriction in its formulation to force the CPMA to create a
connected medial axis. We solve this by first finding all of the
disconnected pieces of the CPMA. Later, we connect all of the
pieces using a minimum distance criterion g(xi, xj), where xi
and xj are endpoints of two distinct pieces. However, neither
the Euclidean distance nor the geodesic distance are suitable
criteria because they lead to connections between nodes that
do not follow the medial axis (See Fig. 4). We instead con-
nect xi and xj with a minimum energy path using an energy
function E�. We must guarantee that E�(x) has high values
when x is close to δ� and low values when x is close to the
medial axis. This way, we enforce the paths to be close to
the MAT. We call the result of this strategy the Connected
CPMA (C-CPMA). In section III-C, we provide details for
E� computation.

B. ISOMETRIC EQUIVARIANCE OF THE CPMA
The distance transform-based medial axis depends only on
the shape �, not on the position or size in the embedding
Euclidean space. Therefore the medial axis should be equiv-
ariant under isometric transformations.
Proposition 1: LetMAT(�) be the medial axis transform

of a connected bounded domain � embedded in Rn, and let
R(x) = Mx + b be an isometric transformation in Rn. The
square matrix M is a composition of any number or rotations
and reflection matrices, and b is an n-dimensional vector.
We say that MAT(�) is equivariant to any R such that
MAT(R(�)) = R(MAT(�)).

Proof: Recall that R is an isometric transformation and
thus it is invertible and preserves the Euclidean distance.
The previous statement implies that R is an isomorphic map
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FIGURE 3. Score Function illustrative example. The rows show F� of an image of size 180× 180.
We computed the reconstructions up to only M1 = 10 and M2 = 62 of the first frequencies.

between an open ball Br (x) and Br (R(x)). Consequently,
if Br (R(x)) is a maximal ball in � then from definition 1 we
have that Br (R(x)) 6* Br ′ (R(x ′)),∀r ′ > r.
Let us now define y = R(x). Applying R to every element

ofMAT(�), we have:

R(MAT(�)) =
{
(R(x), r) | Br (x) 6* Br ′ (x

′),∀r ′ > r
}

=
{
(R(x), r) | Br (R(x)) 6* Br ′ (R(x

′)),∀r ′ > r
}

=
{
(y, r) | Br (y) 6* Br ′ (y

′),∀r ′ > r
}

= MAT(R(�)).

Moreover, the CPMAdepends primarily onF�, which also
holds the isometric equivariant property.
Corollary 1: Let F� be the score function of � as per

definition 3, and let R be an isometric transformation. We say
that F� is equivariant to any R such that R(F�) = FR(�).

Proof: Using the results from proposition 1 and recall-
ing that R is a linear transformation, we conclude that:

R(F�) = R

(
1
M

M∑
i=1

MAT(Î(i))

)

=
1
M

M∑
i=1

R
(
MAT(Î(i))

)
=

1
M

M∑
i=1

MAT
(
R(Î(i))

)
= FR(�).

However, in a discrete domain, this equivariance is only an
approximation because points on both � and MAT(�) are
constrained to be on a fixed, regular grid. In a continuous

FIGURE 4. Path connectivity between CPMA segments. When using the
Euclidean distance (left), two nodes can connect through a path that is
not contained within �. The geodesic distance (center) guarantees that
the path is in �, but does not follow the center-line. The minimum energy
distance (right) E� is a better alternative to enforce the path to follow the
medial axis.

domain, it is easy to demonstrate that the cosine transform
has exact isometric equivariance.

C. IMPLEMENTATION DETAILS
To compute the CPMA enforcing the connectivity, we create
a lattice graph G = (V, E). A point p in the domain of I is a
node of G, if and only if p ∈ �. The node p shares an edge
with all its neighbors in the lattice only if the neighbors are
also inside�. We used an 8-connectivity neighborhood in 2D
and a 26-connectivity neighborhood in 3D.

In order to determine the minimum energy path between
pairs of pixels/voxels, we compute the minimum distance
path insideG usingDijkstra’s algorithm.We assignweights to
every edge with values extracted from E�. Given (x, y) ∈ E ,
we compute the energy of every edge as follows:

E�(x, y) = 1−
F�(x)+ F�(y)

2
,∀(x, y) ∈ E .
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This method guarantees connectivity, but it is inefficient
because of the minimum energy path’s iterative computation.
We sacrifice performance in favor of connectivity.We include
the pseudo-code to compute the CPMA and the C-CPMA in
algorithms 1 and 2 respectively.

Algorithm 1 Cosine-Pruned Medial Axis (CPMA)

Input:
I: N-dimensional binary array representing the

object
M: number of frequencies of I to be used in

the computation
Output:

CPMA: Cosine-Pruned Medial Axis
τ ← 0.47
F← DCT (I)
F�← 0
i← 1
while i < M do

// Reconstructs I using only the
first i frequencies
Î(i)
= IDCT (F, i)

F� = F� +MAT(Î(i))
i← i+ 1

end
F�← F�/M
// The final F� is the average of all
reconstructions

CPMA = F� > τ

return CPMA, F�

The CPMA only relies on one parameter, τ . The value of
τ is the threshold that determines whether a point of F� is a
medial axis point. We empirically set the value of τ = 0.47.
However, in section V, we present the result of an additional
experiment to show how sensitive the CPMA is to different
threshold values.

Another essential consideration when computing the
CPMA is the maximum frequency used to reconstruct the
original shape through the IDCT. Using less thanM frequen-
cies enables a faster computation of the CPMAwithout losing
accuracy. We found that using frequencies greater than M

2
does not yield significant improvement for the CPMA.

IV. EXPERIMENTS
In this section, we describe the experiments used to evaluate
our approach compared to state-of-the-art medial axis prun-
ing methods.

A. COMPARATIVE STUDIES
We chose seven of the most relevant methods in the scientific
literature to compare with CPMA extraction results. Each
method was selected based on a careful review of the state-
of-the-art. These methods illustrate the variety of approaches

Algorithm 2 Connect Skeleton Segments

Input:
CPMA: Cosine-Pruned Medial Axis

representing the object
F�: Score function

Output:
C-CPMA: Connected Cosine-Pruned Medial

Axis
C-CPMA← copy(CPMA)
skeleton-parts← compute-skeleton-parts(CPMA)
max-iter← 200
it← 0
while it < max-iter and |skeleton-parts| > 1 do

graph-i← skeleton-parts[0]
graph-f← skeleton-parts[1]
// Finds the minimum geodesic path

bt. two pieces of the CPMA
min-path← find-min-path(graph-i, graph-f, F�)
C-CPMA[min-path]← True
skeleton-parts←
compute-skeleton-parts(C-CPMA)
it← it + 1

end
return C-CPMA

that authors employ to prune the medial axis. We included the
un-prunedMAT as our first baseline, in order to see how each
method compares to no pruning.

Table 1 summarizes all of the methods in our compar-
ative study. In many cases, the performance of a pruning
method depended on its parametrization. We selected param-
eters for all of the methods following the best performance
parametrization reported in the state-of-the-art.

B. DATASETS
We chose three extensively used datasets of 2D and 3D seg-
mented objects to evaluate our methodology on medial axis
extraction robustness. These datasets are part of the accepted
benchmarks in literature, enabling us to compare our results.

1) Kimia216 DATASET [28]
This dataset consists of 18 classes of different shapes with
12 samples in each class. The dataset’s images are a collection
of slightly different views of a set of shapes with varying
topology. Fig. 5 shows two samples from each class. Contour
noise and random rotations are also present in some images
in the dataset. Kimia216 has been largely used to test a
wide range of medial axis extraction algorithms. Because of
the large variety of shapes, we assume that this benchmark
ensured a fair comparison with the state-of-the-art.

2) Animal2000 DATASET [29]
The Animal2000 dataset enables us to evaluate the properties
of our approach in the presence of non-rigid transformations.
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TABLE 1. Pruning methods employed for the comparative study in 2D.

FIGURE 5. Kimia 216 dataset: Two sample shapes from each class.

FIGURE 6. Sample shapes from Animal2000 dataset.

It contains 2000 silhouettes of animals in 20 categories.
Each category consists of 100 images of the same type of
animal in different poses (Fig. 6). Because silhouettes in Ani-
mal2000 come from real images, each class is characterized
by a large intra-class variation.

3) UNIVERSITY OF GRONINGEN’s BENCHMARK
This set of 3D meshes is commonly found in the literature
to evaluate medial axis extraction methods in 3D [30]–[32].
It includes scanned and synthetic shapes taken from other
popular datasets. It contains shapes with and without holes,
shapes of varying thickness, and shapes with smooth and
noisy boundaries. See Fig. 7. All meshes are pre-processed,
ensuring a consistent orientation, closeness, non-duplicated
vertices, and no degenerate faces.

C. SENSITIVITY TO NOISE AND EQUIVARIANCE ANALYSIS
To compare the robustness of a medial axis extraction
method, we adopt an evaluation strategy similar to [32].
Consequently, we measure the similarity between the medial

FIGURE 7. Sample shapes form the University of Groningen Benchmark.

axis of a shape � and �′. The shape �′ derives from a
‘‘perturbation’’ of �. We are interested in evaluating how
well our methodology responds to induced noise on the con-
tour/surface. We are also interested in assessing how stable
the CPMA is in the presence of rotations of � to test its
isometric equivariance.

We employ the Hausdorff distance (dH ), and Dubuisson-
Jain dissimilarity (dD) as metrics between shapes. The
Dubuisson-Jain similarity is a normalization of the Hausdorff
distance [55], which aims to overcome dH sensitivity to out-
liers. The Dubuisson-Jain similarity between point sets X and
Y is defined as:

dD(X ,Y ) = max {D(X |Y ),D(Y |X )} , (4)

with

D(X |Y ) =
1
|X |

∑
x∈X

min
y∈Y
{d(x, y)} . (5)

We must first choose a strategy to induce noise to the
boundary in order to evaluate the noise sensitivity. We use
a stochastic approach denoted by E , where a random number
of points p ∈ δ� are deformed by a vector v in the direction
orthogonal to the boundary, with a deformation magnitude
that is normally distributed, |v| ∼ N (0, 1). This noise model
is recursively applied n times to every shape in our datasets.
We denote as MAT(E(�, k)) the medial axis of a shape �
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after applying the noise model k times. In our experiments,
we used k = 1, . . . , 20 noise levels.

For every object in each dataset, we compared the medial
axis MAT(�) with the noisy versions, MAT(E(�, k)),
to determine how sensitive a method is to boundary noise.

The medial axis is ideally an isometric equivariant shape
representation so that MAT(R(�)) = R(MAT(�)). Due to
sampling factors, this relationship is only an approximation.
However, we can measure the equivariance by comparing
MAT(R(�)) with R(MAT(�)). The more similar they are,
the more equivariant the method.

Because the translation equivariance is trivial, we evaluate
isometric equivariance only with rotations of �. We do not
use reflections because the properties of the rotation matrices
we use in this study can be extended to reflection matrices.
In our experiments, 2D rotations are counterclockwise in the
range [0, 90] degrees around the origin.We use 30 rotations at
regular intervals. In 3D, we use a combination of azimuthal
(θ ∈ [0, 90]) and elevation (φ ∈ [0, 90]) rotations around
the origin. The angles θ and φ take values at intervals of 18
degrees.

D. RECONSTRUCTION VS SIMPLIFICATION TRADE-OFF
The ideal pruned medial axis should: 1) have a more sim-
plified medial axis with less or no spurious branches, and
2) provide the best reconstruction of the given shape. In prac-
tice, there is always a trade-off between these two proper-
ties. We aim to estimate this trade-off using a probabilistic
approach similar to the one introduced in [56].

Let Ŝki be the medial axis of a shape �i computed
with a pruning method k from Table 1. We are inter-
ested in measuring how accurately Ŝki can reconstruct
the original shape, while simplifying its un-pruned medial
axis, Si.
To estimate the quality of the reconstruction, we use the

area difference between �i and its reconstruction R(Ŝki ).
We call this metric the reconstructed area error, and compute
it as:

RAE(Ŝki , �i) =
3(�i)−3(R(Ŝki ))

3(�i)
, (6)

where 3(.) denotes the area in pixels.
Similarly, we measure how much Ŝki simplifies the un-

pruned medial axis with a metric that depends on the normal-
ized length of Ŝki . We call this metric the log-simplification
ratio, and compute it through:

LSR(Ŝki , Si) = log2

(
0(Ŝki )

0(Si)
+ 1

)
, (7)

where 0(.) is the total length in pixels of the medial axis’
segments.

We evaluate the trade-off between area reconstruction and
medial axis simplification by computing RAE and LSR on
all samples per dataset. Later, we use their empirical prob-
ability distributions (Eq. 8 and 9) to plot a ROC-like curve

at increasing thresholds t ∈ [0, 1]. As it is well-established
in ROC curves [57], the closer the curve gets to the upper-
left corner, the better the trade-off between the underlying
metrics. Notice that we use the left and right tails of P(RAE)
and P(LSR), respectively. This is merely a convention to place
the perfect trade-off on the upper-left corner, and it does not
change the properties of the curves.

P(RAE < t) =
1
n

n∑
i=1

1RAEi<t (8)

P(LSR > t) =
1
n

n∑
i=1

1LSRi>t (9)

V. RESULTS
In this section, we present and discuss the results of our
approach on medial axis pruning. We are evaluating results
on two properties: 1) robustness to noise of the contour, and
2) isometric equivariance.

A. STABILITY UNDER BOUNDARY NOISE
We compared the stability of the CPMA under boundary
noise against other approaches in Table 1. We conducted
our experiments on Kimia216 and the Animal2000 Dataset
for 2D images. Additionally, we used a set of 3D triangular
meshes from the Groningen Benchmark for experimentation.

For our noise sensitivity experiments, we applied 20 times
the noise model E(�, k) to every object of each dataset.
We then computed theirMAT using every method in Table 1
with different parameters. Finally, each MAT(E(�, k)) was
compared with MAT(�) using both the Hausdorff distance
and Dubuisson-Jain dissimilarity. We report the per method
average of each metric over all the elements of each dataset.

First, we tested our medial axis pruning method on
the Kimia216 dataset, the results of which are presented
in Table 2. The table shows that the CPMA and the C-CPMA
are competitive against state-of-the-art methods for medial
axis extraction. Our results show similar performance to two
state-of-the-art methods: the GIMA and SFEMA. The CPMA
and C-CPMA also performed better than Poisson Skeletons,
SAT, topological thinning, and the un-pruned MAT. For
visual comparison, Fig. 8 (top row) shows both Hausdorff
distance and Dubuisson-Jain dissimilarity against noise level.
The figure only displays the best parametrization of every
method to improve visualization. As seen here, it is clear
that the CPMA and the C-CPMA are among the three best
results when we use the Dubuisson-Jain dissimilarity metric.
However, we observe a decrease in performance compared to
the Hausdorff distance metric.We believe this occurs because
of Hausdorff’s distance sensitivity to outliers.

The Animal2000 dataset contains nearly ten times more
shapes than Kimia216. This leads to more variation between
shapes, and therefore a more challenging setting. Table 3
shows similar results compared to Kimia216, confirming that
the noise invariant properties of the CPMA still hold in a
more robust dataset. The GIMA and the SFEMA are still the
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FIGURE 8. Noise sensitivity results on Kimia216 dataset (top), Animal2000 dataset (middle), and Groningen Benchmark
(bottom). The figure shows the Hausdorff distance (left) and the Dubuisson-Jain dissimilarity (right) for all of the
methods in Tables 2, 3, and 4. Only the best parametrization of each method is depicted for better interpretation.

best methods measured with the Dubuisson-Jain dissimilar-
ity, closely followed by both the CPMA and the C-CPMA.
Results of using the Dubuisson-Jain dissimilarity as a metric
show that the CPMA is close to methods such as BEMA
and SFEMA. However, the results are not as good when we
compare using the Hausdorff distance metric. Fig. 8 (mid-
dle row) depicts the best performance for every method in
comparison to ours. Our experiment’s results suggest that the

CPMA noise invariant properties generalize across different
datasets.

For our 3D experiments, we selected 14 objects from
the Groningen Benchmark, reflecting the most common
shapes used in the literature. Each object was voxelized
to a binary voxel grid with resolution 150 × 150 × 150.
This resolution offered sufficient details as well as a suf-
ficiently low computational cost. In contrast to the 2D
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TABLE 2. Noise sensitivity results on Kimia216.

TABLE 3. Noise sensitivity results on Animal2000.

case, we applied E(�, k) only 10 times to the 3D object.
We did this for two reasons: 1) to reduce computational
complexity, and 2) because contour noise tends to be more
extreme in 3D at the chosen resolution. The results on the
Groningen dataset are shown in Table 4 and Fig. 8 (bottom
row). Notice that both the CPMA and C-CPMA achieved
the best results among the other methods when compared
with the dissimilarity measure. These results show that our
methodology has noise-invariance properties, and it is sta-
ble in the presence of small surface deformation. However,
the results show unusual patterns when compared with the
Hausdorff distance. In fact, for some methods, the met-
ric decreases when the noise level increases. We attribute
this behavior to the outlier sensibility of the Hausdorff
distance.

We complete the noise stability analysis showing examples
of the MAT computed with our methodology in Fig. 9, and
compare them to the other methods in this study.

B. SENSITIVITY TO ROTATIONS
We measured the dissimilarity between MAT(R(�)) and
R(MAT(�)) across different shapes in the datasets. The lower
this dissimilarity, the more stable the method is under rota-
tion. The rotation sensitivity analysis on the Kimia216 dataset
is summarized in Table 5 and Fig. 10 (top row). The results
show that the curves of the CPMA and the C-CPMA fall near
the average of the rest of the methods achieving state-of-the-
art performance. The results also surpassed several methods,
including Poisson skeleton, SAT, and thinning. Notice that
when using the dissimilarity metric the CPMA, the GIMA,
the SFEMA, and the BEMA form a subgroup that performs
significantly better compared to the others.Moreover, the per-
formance of these methods oscillates around a value of dis-
similarity of around 1 pixel on average. The intuition for this
result is that regardless of the rotation, skeletons computed
with these methods vary only at one pixel. Consequently,
we can claim that they exhibit rotation equivariance.

We applied the same analysis to the Animal2000 dataset
achieving similar results. In this case, the CPMA and the
C-CPMA ranked third and fourth, respectively, among all
methods when we used the dissimilarity metric. The results
for all methods and parameters are presented in Table 6.
As before, we also present a summary with the best
parametrization for each method in Fig. 10 (middle row)
to facilitate the interpretation. Notice that due to the larger
number of objects in the Animal2000 dataset, the curves for
every method appear to be smoother, highlighting stability
across different rotation angles and shapes.

Finally, we conducted the rotation sensitivity analysis on
the 3D dataset. The results are summarized in Fig. 10 (bottom
row). The image shows the four 3D medial axis extraction
methods we compared in our study for combinations of
azimuthal and elevation angles. This figure shows how both
the Hausdorff distance and the Dubuisson-Jain dissimilarity
become higher when the rotation is more extreme, except in
the case of C-CPMA. We believe this behavior is due to the
connectivity enforcement mitigating the gaps in the medial
axis, and reducing the metrics.

C. RECONSTRUCTION VS SIMPLIFICATION TRADE-OFF
This experiment aims to estimate the trade-off between recon-
struction accuracy andmedial axis simplification of themeth-
ods in Table 1. To evaluate the trade-off, we plot ROC curves,
using the empirical probability distributions of the RAE and
LSRmetrics defined in section IV-D. For the sake of readabil-
ity, we use only the best parametrization of each method as
we did in previous experiments.

Additionally, we only include methods whose resulting
medial axis is a single connected piece. Unconnected medial
axes artificially decrease the LSR metric because it depends
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FIGURE 9. The images show the un-pruned MAT and the results of four different pruning methods. Rows one and two are objects from
Kimia216 dataset. Rows three and four are objects from Animal2000. Rows five and six are objects from the Groningen Benchmark. Notice how the
CPMA and the C-CPMA yield medial axes with less spurious branches while preserving the topology.

TABLE 4. Noise sensitivity results on Groningen Benchmark.
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FIGURE 10. Rotation equivariance results on Kimia216 dataset (top), Animal2000 (middle), and Groningen Benchmark
(bottom). The top row shows the Hausdorff distance and Dubuisson-Jain dissimilarity for all the methods in Tables 5
and 6.

on the total medial axis’ length. Unconnected medial axes,
therefore, affect the trade-off and result in biased ROC curves.

Consequently, we exclude SFEMA, BEMA, and CPMA
from our trade-off experiments. In contrast, we can include
the C-CPMA because of its connectivity enforcing strategy.
The energy function we use to enforce connectivity in the C-
CPMA is a result of the score function’s formulation from
the CPMA definition. Note that such energy function cannot

be obtained from the SFEMA and the BEMA definitions.
Fig. 12 provides a qualitative comparison of unconnected
medial axis pruning methods with the C-CPMA. We also
exclude theGroningen dataset becausemost 3Dmethods only
provide theMA and not theMAT, necessary for the object’s
reconstruction.

We summarize our trade-off experiments in Fig. 11. The
vertical axis shows the ratio of shapes whose reconstruction
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FIGURE 11. ROC curves for RAE and LSR trade-off. The trade-off performance improves as it is closer to the upper-left corner, where the
number of objects with good reconstruction is high, while the number of objects with poor medial axis simplification is low.

TABLE 5. Rotation equivariance results on Kimia216.

area error is less than a threshold t . The horizontal axis
shows the ratio of shapes whose normalized length is greater
than the threshold. Notice that we can compare both met-
rics with the same threshold because their range is bounded
by the interval [0, 1]. As it is well-established in ROC
curves [57] the trade-off is better as it approaches the upper-
left corner of the graph. The curves in Fig. 11 show
how the C-CPMA performs better, surpassing all methods
in the comparative study. This result follows from Fig. 9
where it is clear that methods like GIMA do not achieve
a satisfactory reconstruction, as it oversimplifies the medial
axis. Moreover, Thinning, Poisson Skeleton, and SAT have
lower reconstruction rates and tend to leave more spuri-
ous branches; this explains their ROC curves’ shift to the
right.

TABLE 6. Rotation equivariance results on Animal2000.

D. HYPER-PARAMETER SELECTION
Many medial axis pruning methods depend on hyper-
parameters to accurately estimate the medial axis [43]–[45],
[54]. These parameters usually have a physical meaning in the
context of the object whose medial axis they seek to estimate.
Often, the parameters are distances or angles formed between
points inside the object. In other work, some authors create
score functions like ours, intending to use its values as a
filter parameter to remove points on spurious branches of the
MAT. In most cases, however, such parameters are subject to
factors like resolution or scale. Thus, we conducted another
experiment to test the sensitivity of the CPMA to the pruning
parameter τ at different scale factors of the input object.

Fig. 13 shows the Jaccard index’s average, also known
as Intersection over Union, as the reconstruction metric vs.
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FIGURE 12. Unconnected medial axes from the methods not included in
trade-off experiments. The second row shows the CPMA and C-CPMA for
visual comparison.

FIGURE 13. Sensitivity analysis of threshold τ to different scales of the
input images. The graph shows the average Jaccard index of the
reconstructed shape with respect to the original object for the CPMA
computed with different values of τ . Higher values of the threshold lead
to less spurious branches. We also show the standard deviation error
bands.

the values of τ . We compared an object � against its recon-
struction �̂ over all images in the Kimia216 dataset. The fig-
ure shows how high values of τ deteriorate the reconstruction,
whereas lower values do not prune enough spurious branches.
From the figure, we can infer that values around τ = 0.47
offer a good trade-off between reconstruction and branch
pruning. Moreover, around this value, the standard deviation
reaches its minimum value suggesting optimal performance
regardless of the object. Because the value of τ is stable for

different scale factors, we conclude that scale does not affect
the selection of the threshold.

VI. CONCLUSION AND FUTURE WORK
We presented the CPMA, a new method for medial axis
pruning with noise robustness and equivariance to isometric
transformations. Our method leverages the discrete cosine
transform to compute a score function that rates the impor-
tance of individual points and branches within the medial axis
of a shape.

Our pruning approach delivers competitive results com-
pared to the state-of-the-art. Our experiments show that our
method is robust to boundary noise and offers a satisfactory
trade-off between reconstruction and medial axis simplifica-
tion. Additionally, it is equivariant to isometric transforma-
tions, and it is capable of producing a stable and connected
medial axis even in scenarios with significant perturbations
of the contour.

The CPMA can be efficiently computed in parallel because
it depends on an aggregation of reconstructions of the origi-
nal shape. Each reconstruction is independent of the others,
which allows the parallelism.

We believe our work leaves room for improvement, and
thus we have identified the following potential for future
work.

All of the 3D objects we used come as 3D triangular
meshes. To compute the CPMA, we discretize the meshes to
fix a resolution of 1503 voxels. The discretization introduces
two issues: 1) the objects lose small details in their structure,
which affects the overall performance, and 2) the isometric
equivariance decreases because rotated voxels will not per-
fectly align with non-rotated voxels.

Our algorithm for connectivity enforcement relies on iter-
ative computations of Dijkstra’s algorithm for finding the
minimum energy path between two pieces of the unconnected
medial axis. Better strategies to compute the paths could
increase the CPMA’s efficiency.
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