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Abstract— We present our method for efficiently learning
an implicit neural representation for shape reconstruction and
pose estimation from raw sensor data. In contrast to recent
methods, we utilize signed distance functions (SDFs) and learn
this 3D representation in a self-supervised manner from depth
observations. Furthermore, we argue that such a representation
is suitable for predicting 3D motion that is informed by the
shape representation.

I. INTRODUCTION
A geometric understanding of its environment is critically

important for a robotic agent to interact with the world. This
understanding requires knowledge about shapes, objects,
and how their properties evolve over time, implying that a
representation capable of predicting the motion of objects
in 3D can encode most necessary information for robotics.
However, in realistic scenarios, the agent does not have
access to a pre-existing 3D representation of the scene.
Therefore, such representation must be learned from partial
observations of the environment provided by available sensor
measurements.

Recent work on shape reconstruction has attempted to
learn object shape representations for the problem of shape
completion [1], [2], [3], but has rarely considered how object
shapes may influence 3D motion and, subsequently, the
dynamics of the scene. On the other hand, prediction methods
reason how the environment will evolve over time. Most
prior work [4], [5], [6], [7] on prediction has focused on
the problem separate from any understanding of shape and
structure and focuses on predicting 2D motion by estimating
the 2D flow of pixels or other transformations directly
in the image space. However, building prediction models
that are aware of the 3D structure of the world [8], [9],
[10], [11] has several advantages. First, many behaviors that
result in large discontinuities in two dimensions, such as
occlusions and object permanence, become much simpler
when viewed in three dimensions. Second, it is significantly
easier to impose physically-grounded constraints on a three-
dimensional space than on a two-dimensional space.

In this short paper, we present our method for self-
supervised 3D shape and pose estimation from a depth
sensor along with preliminary results. In contrast to other
methods that use partial point clouds [8], [9] or voxels [10] to
facilitate 3D prediction, we utilize signed distance functions
(SDFs) [12], [13], [14], [15] as our shape representation.
SDFs enable shape completion, allowing our method to rea-
son about unseen portions of the scene, and have shown great
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Fig. 1. Sample trajectories from the dataset.

performance in representing high-resolution shapes more
efficiently than explicit representations, such as voxels. In
addition, this representation is physically grounded, allowing
us to easily incorporate structure to the problem, including
enforcing rigid dynamics and penalizing interpenetration.

II. SELF-SUPERVISED SHAPE AND POSE FOR PREDICTING
THE FUTURE

We seek to perform object-centric prediction with rigid
dynamics. In order to do this, we build a pipeline consiting
of three components: first, an segmentation and encoding
module that extracts object-centric information, second, a
signed-distance function module that learns to represent
the three-dimensional structure of each object, and third, a
prediction module that predicts the poses of each object into
the future.

a) Encoding: Our method assumes a static RGB-D
camera pointing towards an object overcoming rigid dy-
namics. The given RGB-D images are masked to separate
the moving object from the background. Later, we pass
the masked RGB-D image through a convolutional neural
network (CNN) to generate pixel-wise features. Because we
focus our approach on the prediction task, we use the ground-
truth segmentation masks on the input images.



The resulting masked features are passed through another
CNN to generate two disentangled latent vectors (z, x) for
shape and pose, respectively. The disentanglement of the
two latent vectors is enforced alongside our rigid dynamics
assumption by combining the shape and pose latent vectors
from different timesteps, as described in the next section.

b) Learned Implicit Shape Representation: In contrast
to related work on object centric prediction [16], [4], [5],
[17], our method reconstructs objects and predict their dy-
namics as a full 3D geometry rather than individual future
frames. To represent a 3D shape, we train a DeepSDF [12]
decoder fθ conditioned jointly on a shape latent z and on
query points p ∈ R3. We compute a positional encoding [18],
[19] ϕ(p) of the a query point before feeding it into fθ.

Simultaneously, we estimate the object’s pose through a
ReLU-based MLP decoder, such that (R, t) = gθ(x), using
the rotation parametrization from [20].

In order to account for the object’s motion, we apply a
transformation, (R, t) to each query point. We use the same
transformation on all query points for a given object at a
given t, enforcing the assumption that all objects are rigid.

pt = Rp+ t (1)

We use the shape code from the first time step at all future
time steps, such that the signed distance at a given point at
a given time step is equal to

dist = fθ (z0, ϕ (Rtp+ tt)) , (2)

where z0 is the shape code from the object at time 0 and
(R, t) is the pose of the object at time t.

Training a deep SDF decoder involves a significant amount
of SDF ground-truth samples that are rarely available in real-
world settings. Therefore, we train our shape decoder in a
self-supervised way by approximating the SDF samples with
a truncated signed distance function (TSDF) we generate
using only the depth input.

Let S be a set of points on the surface of the ground truth
object, and R be a set of points randomly sampled on the
camera rays. We train our model using TSDF values at points
p ∈ R. We compute the TSDF values at training time as the
Chamfer Distance dcd between S and R. We define three
loss functions:

Leikonal =
∑
p∈R

| ||∇fθ(z0, ϕ(p))|| − 1| (3)

Lsurface =
∑
p∈S

|fθ(z0, ϕ(Rp+ t))| (4)

Ltsdf =
∑
p∈R

|fθ(z0, ϕ(Rp+ t))− dcd(Rp+ t, S)|. (5)

By minimizing the Eikonal loss, Leikonal we encourage fθ
to be close to a solution of the Eikonal PDF. The surface loss
Lsurface encourages the SDF decoder’s values to vanish at
surface points because their distance to the object is zero.
Finally, the TSDF loss enforces appropriate distance values
on points around the object. Note that our strategy is entirely
self-supervised because it only depends on S and R that we
compute from the input depth image.

Fig. 2. Pose estimation and reconstruction of the same trajectory from
unseen camera views.

c) Prediction: In order to train the prediction compo-
nent of our model, we first freeze the parameter weights of
the encoder and the SDF decoder. We then train an LSTM
to predict the pose latent at the next time step, xt+1, from
the shape and pose latents at the current time step, (zt, xt).

III. PRELIMINARY RESULTS

a) Dataset: We evaluate our method on a simulated
dataset of ShapeNet [21] objects launched in a parabolic tra-
jectory at different linear and angular velocities. We restrict
the position and initial velocity of the trajectories such that
all objects land on a flat space W ∈ [−1, 1]2. Our dataset
contains 24k sequences of RGB images, depth frames, and
ground truth poses with the camera pointing towards the
center of W .

b) Pose Estimation and Reconstruction Results: We
evaluate our method’s capacity to jointly predict the shape
and pose of objects moving due to parabolic shot dynam-
ics. We summarize our results in Fig. 2. Our method can
reconstruct shapes at different poses during the parabolic
trajectory. Note that we can render the trajectories from
unseen camera viewpoints because our model represents
entire 3D geometries and not just the input viewpoint.

IV. CONCLUSIONS

We present a method for learning shape and pose repre-
sentations from RGB-D images. We encode each object in a
given RGB-D frame into a set of disentangled latent vectors,
which allow us to construct a signed-distance function of the
object and apply rigid transformations to it.

Future work includes refining the prediction pipeline and
incorporating the model into robotic systems. Additionally,
performing prediction in three dimensions allows for the
inclusion of physically meaningful losses, such as penalizing
the model for causing objects to interpenetrate, which we
expect will allow for better performance in scenes with
multiple objects.
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