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Abstract—We present Level Set Mesher, a single-image to 3D
reconstruction strategy to deform an initial spherical triangular
mesh into the 3D geometry of a target shape. Level Set Mesher
offsets each vertex in a discrete number of steps following a
learned velocity vector field V modeled as a Graph Attention
Network. At each step k, we constrain the deformed vertices to
lie on the lk level set of the target shape’s signed distance function
to guide the deformation process. We show that our approach
accurately estimates the surface’s normal of the predicted shapes
and reduces mesh’s artifacts in the final prediction. We compare
our approach with state-of-the-art single-image to 3D reconstruc-
tion methods and show improvements in accuracy predictions,
resulting in better quality and manifold meshes.

I. INTRODUCTION

Single-image to 3D reconstruction is a promising but
challenging area of research in computer vision with many
potential applications, including robotic manipulation, self-
driving cars, and augmented reality. In recent years, there
has been increased interest in 3D reconstruction enabled by
advances in deep learning techniques and the availability of
large 3D shape datasets [1], [2]. However, due to its under-
constrained nature, the subject remains an open problem with
exciting challenges.

Existing research has addressed the 3D reconstruction prob-
lem by extending two-dimensional Convolutional Neural Net-
works (CNN) capabilities to an extra dimension. 3D CNNs
allow neural network-based approaches to predict occupancy
voxel grids [3]–[5] that represent 3D shapes. However, these
3D CNNs pose several challenges due to their computational
cost and their capacity to approximate objects with smooth
surfaces. Instead, other work uses continuous implicit repre-
sentations of the target shape in the form of deep learning
models that discriminate whether a point x is on the surface
of the 3D shape [6], [7].

Another popular strategy for single-image shape recon-
struction is deforming the vertices of an initial mesh that
encloses the target shape until the deformation converges to
the target surface [8]–[11]. These types of methods are easy
to formulate and to model. However, they often lead to errors
in the prediction’s topology when the predicted triangles self-
intersect, which resulting in non-manifold meshes.

This paper presents a new deformation approach to single-
image 3D reconstruction that aims to reduce wrong surface
normals, self-intersecting faces, and other artifacts that make

the predicted surfaces non-manifold while maintaining high
prediction accuracy. Given a 3D shape Ω, we seek to estimate
the evolution of an initial spherical surface along a velocity
field V (x, t), such that after a time T , the initial surface
converges to ∂Ω. We learn such vector field with the help
of an attention-based deep network architecture that takes an
RGB image as input to produce a discrete set of deformations
from an initial spherical topology into the geometry of ∂Ω.

We are interested in learning a deformation field V (x, t)
that smoothly deforms the mesh such that the trajectories
of a point xi ∈ S2 do not interfere with the trajectory of
another point xj ∈ S2. Intersecting trajectories can cause
mesh artifacts that reduce the quality of the final predictions.
To learn a smooth deformation, we constrain V to follow
the level sets of the target shape’s signed distance function
(SDF). The intuition behind this choice is that the gradient of
a shape’s SDF function is a curl-free vector field. The flow
therefore, progresses without producing unexpected turns that
could cause mesh artifacts. We show how the deformation
through V occurs for a single shape in Fig. 1 (left).

We evaluate our approach using the ShapeNet dataset in
order to compare our method to related methods in the state-
of-the-art. For the comparison, we use metrics that reflect the
accuracy of the predictions and the manifoldness of the final
meshes.

In summary, we make the following contributions:
• We show that our level set approach increases the ac-

curacy of predicting 3D shapes from single images by
learning to deform an initial topology while progressively
following a well-behaved deformation field.

• Our learned deformation vector field prevents collisions
of the deforming points’ trajectories, maintaining a rel-
atively low amount of mesh artifacts measured as self-
intersecting faces.

II. RELATED WORK

This section reviews the most relevant work on single-image
to 3D reconstruction. We divide this work into three categories
according to their predicted geometry representation.

Occupancy voxel grids and point clouds. Several ap-
proaches exist wherein CNN architectures act upon 2D images,
after which a 3D CNN decoder predicts an occupancy voxel
grids representing the target shape [2]–[5], [12], [13]. These



types of architectures come at a high computational cost
forcing authors to use low-resolution voxel grids [14], [15],
which hurts the predictions’ accuracy. Other work, instead,
focuses on reconstructing 3D shapes as point clouds [16], [17]
by employing generative CNN models that act on unordered
point sets [18]–[20]. Although point clouds methods reduce the
computational cost, they require post-processing to produce
ready-to-use triangular meshes.

Implicit surfaces. Implicit methods have gained popularity
due to their ability to predict shapes without discretization
of the output space. They lead to memory-efficient surface
representation because the space where the surface is embed-
ded does not need to be explicitly stored. In general, these
methods involve a deep neural network that learns the deci-
sion boundary of a binary classifier [6], [7], [21], indicating
whether a point x is on the surface. Other approaches learn
to approximate the SDF on a subset of a Euclidean space
around the target shape [22]–[25]. Implicit representations
allow reconstructing high-resolution meshes by sampling the
embedded space. However, sampling operations are expensive,
and we therefore need efficient strategies to overcome such
limitations. Moreover, implicit approaches require 3D dense
ground truth annotations for training. Further, the question of
how to learn implicit representations from image data alone
remains unanswered [26].

Mesh deformation. Some authors have opted for directly
outputting triangular meshes by predicting a set of triangles
with geometric constrains [27], or by deforming an initial
topology [8]–[11], [28], [29]. The most representative method
in this category is Pixel2Mesh [8]. Pixel2Mesh uses a series
of graph neural networks (GNN) to deform and refine an
initial ellipsoidal topology until it fits the ground truth mesh.
This type of approach avoids post-processing and can be
trained end-to-end. However, this method suffers from two key
drawbacks: 1) it can only predict genus-zero topologies, and 2)
the predictions are prone to mesh artifacts like self-intersecting
faces or wrong surface normals orientation. Another example
of mesh deformation methods is Mesh-R-CNN [11]. Mesh-R-
CNN generates the initial predictions from a volumetric CNN
backbone based on Mask-R-CNN [30]. Later, a GNN refines
the predicted mesh. In contrast to Pixel2Mesh and other mesh
deformation methods, Mesh-R-CNN can handle shapes with
multiple topologies (shapes with holes). However, it fails to
produce jointly accurate and artifact-free meshes.

III. METHOD

We introduce Level-Set Mesher (LSM) as a new approach
to single-image for 3D reconstruction. Our method predicts 3D
shapes by deforming an initial mesh with spherical topology
through a deformation flow that follows the level sets of the
SDF’s target shape.

A. Level set deformation field

Let us consider a 3D shape Ω enclosed in the unit sphere S2

and assume that its surface ∂Ω is a two-dimensional smooth
manifold. It is possible to evolve the surface of every point x ∈

S2 into a point on ∂Ω, given a velocity vector field V : R3 7→
R3. We model the deformation as an initial value problem
(IVP) with

dx

dt
= V (x, t), t ∈ [0, 1]. (1)

Note that Eq. 1 admits a unique solution given that V is
continuous and Lipschitz in the deformation interval. This is
the case when the gradient vector field is induced by the SDF
of ∂Ω. Using the SDF’s gradient as the vector field in Eq.
1 leads to smoother trajectories of individual points in S2 to
∂Ω.

In a discrete setup, we approximate the surface of the
sphere with a triangular mesh G = (V, E). We deform the
vertices xi ∈ V through the vector field using backward finite
differences on the left side of Eq. 1. We compute the vertex’s
position at any deformation step k = 1, ..., n, and for each
vertex i as:

xki = xk−1
i +∆t · V (xk−1

i ), (2)

where x0
i ⊂ S2 and xni ⊂ ∂Ω. Note that the mesh’s topology

remains unaltered because the edges do not change during the
deformation.

We propose to estimate the deformation from xk−1
i to

xki by training a sequence of deep neural networks gkθ that
approximates the vector field at every vertex location through
the n steps of the deformation process.

Our model takes an RGB image I rendered from ∂Ω as
input, plus the vertices of the initial mesh. Then our model
computes:

zki = fϕ(Kxk−1
i , I) (3)

xki = xk−1
i + hkψ

(
gkθ

(
xk−1
i , zki , g

k−1
θ (...)

))
. (4)

In Eq. 3 and 4, we approximate fϕ as a 2D CNN with
parameters ϕ. Through fϕ, our model extracts visual features
zki from the input image I. We project xk−1

i into I using the
projection matrix K to extract features at locations where the
vertices project onto the image plane. Later, we concatenate zki
with the current vertex position and pass it through gkθ , a Multi-
head Graph Attention Network (MGAN) that compute vertex
features on G. The function gkθ follows the MGAN formulation
from [31], [32].

The third component of our model is another small MGAN
hkψ with tanh(x) activation function. This last component
takes the vertex features from gkθ and predicts the direction and
magnitude of the velocity vector we use to evolve the surface
as per Eq. 2. The key observation that led us to use a graph
attention mechanism is that points in small neighborhoods
follow a similar flow. Thus, at each vertex i, our model learns
which neighbors to attend – through the attention re-weighting
strategy – to predict the next step in the flow.

Note that we are interested in evolving the surface with a
smooth vector field capable of capturing complex details of
the target mesh’s geometry. We need a smooth deformation to
keep the surface’s normals pointing outward at every step. In
this way, we prevent artifacts in the mesh’s triangles induced
by erratic movements of the vertices.



To achieve smooth trajectories, we constrain the deforma-
tions to follow to the gradient vector field −∇ϕ(x), with ϕ the
SDF associated to ∂Ω. We enforce such restriction by keeping
the points xki close to the corresponding level set of ϕ(x)

Γk = {x | φ(x) = lk}. (5)

The gradient vector field controls the vertex’s deformation
by making them jump between level sets until they converge
to the target shape’s surface. We chose Γk at values lk such
that lk > lk+1 and ln = 0. Consequently, Γn is the surface of
Ω, and Γ0 is the set of points on the surface of a sphere. Note
that the deformation follows the IVP dynamic process from
Eq. 1 that is guaranteed to converge to the target surface.

Our method diverges from previous related approaches such
as Wang et al. [8] where the vertex deformation is expected
to occur at a single step. The remaining steps in Wang et
al. aim to predict vertex refinements with no clear definition
of how the deformation should behave. Our key insight to
develop our strategy is that a progressive deformation allows
us to learn increasing level of details in the predictions while
avoiding undesired flow behavior like the ones observed in
Fig. 1 (right).

B. Losses and regularization

We motivate our model under the assumption that the de-
formation between intermediate level sets is an easier problem
to solve than predicting the offsets between Γ0 and Γn in one
single step. Thus, our loss function needs to guide the evolving
points until they reach the surface of the target shape, Fig. 1
(left).

To learn the appropriate deformation paths, the loss function
needs to fit the intermediate predicted meshes to the corre-
sponding level set. However, mesh to mesh comparison is
intractable, and thus we employ a proxy loss function through
the Chamfer distance:

dCD(S1, S2) =
∑
x∈S1

min
y∈S2

||x− y||22 +
∑
y∈S2

min
x∈S1

||x− y||22.

Let us consider the set Γ̂k = {x̂ki }ni as an approxima-
tion of Γk. We train our deformation model by minimizing
dCD(Γ

k, Γ̂k), with Γk sampled from ground truth points from
the corresponding level sets.

Additionally, we enforce our learned vector field to further
prevent mesh artifacts by regularizing the edge length of the
predicted triangles. Edge length regularization is designed to
keep magnitude of the deformation small, further reducing
any potential self-intersection of the triangles. We define both
terms in loss function as:

LCD =

n∑
k=1

dCD(Γ̂
k,Γk) (6)

LE =

n∑
k=1

|Ek|∑
j=1

||ekj ||. (7)

The overall loss of the model is a weighted sum of the two
losses:

L = λCDLCD +

n−1∑
k=0

λkELE (8)

C. Architecture

We use a 2D Resnet-50 CNN pre-trained on ImageNet [33]
as our visual feature network fϕ. We model each gkθ as a
MGAN with six layers, ReLU activation function, and four
attention heads. The output of each gkθ is a 128-dimensional
feature vector that is the concatenation of the four attention
feature vectors of dimension 32 each. We allow self-loops in
gkθ to guarantee that a vertex xki can attend itself.

The final component of our architecture, hkψ , is a single
layer MGAN. For this network we use four attention heads
with tanh(x) activation function each. The output of hkψ is
a 3-dimensional vector representing the offsets that deform
xk into xk+1. The multi-head features from hkψ are averaged
rather than concatenated to guarantee a 3-dimensional vector
as output.

We use seven different level sets in our experiments includ-
ing the shape’s surface. Before steps k = 2 and k = 4, we
subdivide the predicted meshes using a Mid-Edge scheme [34],
[35]. This scheme helps reduce the memory footprint while
capturing finer details in the final stages of the deformation.
Please see the Supplementary Material for further discussion
on the subdivision strategy.

IV. EXPERIMENTS

We test our method on a subset of ShapeNet [36] following
the evaluation protocol defined in [9]. We compare our results
with state-of-the-art approaches and focus on the reconstruc-
tion accuracy and smoothness of the output meshes.

A. Experimental Setup

1) Data and pre-processing: We benchmark our model on
a subset of the ShapeNetCorev1.0 dataset with only 13 classes
as in [3], [8], [11]. We used ShapeNet’s original dataset split
for training, validation, and testing. All meshes are centered
at the origin and normalized to a unit cube. We use the image
renderings from Choy et al. [37] – along with their extrinsic
matrices – as inputs to our model. Each mesh in the dataset
is rendered from 24 camera viewpoints.

ShapeNet does not guarantee that all the ground truth
meshes are watertight or winding-consistent. We therefore pre-
process the meshes into 2-manifolds using [38]. Later, we
sample points from different level sets of the mesh’s SDF for
every pre-processed watertight mesh.

In our experiments, we use seven level sets per shape. We
set Γ0 to be a sphere of radius r = 1.25, and Γ6 to be the
shape’s surface. We obtain the remaining Γk by sampling the
mesh’s SDF inside a cube of side s = 3 centered on the
shape. We observe that outer-level sets only carry information
about the object’s general shape, whereas the level sets closer
to the surfaces exhibit more detailed features. Therefore, we
sample level sets at exponentially decaying intervals such that



Fig. 1. (Left) Example of a point xi evolving through the level sets Γk of the SDF until reaching the surface of the target shape. (Right) Examples of two
self-intersection phenomena when the deformation is not constrained by a proper vector field.

lk = 2−k, for k = 1, ..., 5. We provide further details about the
level set sampling in the Supplementary Material. Our method
takes approximately 0.64 seconds to predict a target shape
from its RGB input image at inference time on an NVIDIA
v100 GPU.

2) Evaluation metrics: We adopt Pixel2Mesh [9] evaluation
protocol and extended it to measure self-intersection and
normal consistency on the final predicted meshes. We compute
the symmetric squared Chamfer distance between prediction
and ground truth for every mesh in the test split, along with
two F -scores at τ and 2τ . We use the same threshold values
as Pixel2Mesh. We also include a normals’ consistency metric
defined as the absolute value of the cosine similarity between
the predicted normals and their ground truth. Additionally, we
include two metrics to evaluate the predictions’ manifoldness
of each mesh: self-intersection length and self-intersection
ratio. The former is computed by adding all of the line segment
lengths that result when a pair of triangular faces intersect. The
latter is the ratio of the number of faces that self-intersect over
the total number of mesh faces.

3) Baselines: We use Pixel2mesh [8] as a baseline because
it is the closest approach to ours. We use the implementation
provided by [11] and retrain the model following their
training recipe on our pre-processed dataset to ensure a fair
comparison. As in Pixel2Mesh, we deform an a-priori-defined
topology – a sphere –until it fits the target shape. However, we
use the level sets data as described in section III to improve
the accuracy of our predicted meshes. Our model has more
mesh deformation stages than Pixel2Mesh due to the number
of level sets we use in our architecture, thus increasing the
network’s size and capacity. Consequently, we also train a
larger version of Pixel2Mesh with five stages as our method
for a fair comparison.

We include MeshRCNN [11] as another baseline in our
comparative study. Unlike our approach, MeshRCNN can
predict meshes with holed topology. We acknowledge that our
proposed method produces only genus-0 topology. Therefore,
we also show experiments on a subset of ShapeNet that only
contains shapes with zero holes to ensure a fair comparison.

Method Input mesh (V, E) Output mesh (V, E)
P2M [8] (162, 320) (2562, 5120)
P2M, 5 stages (12, 20) (2562, 5120)
MeshRCNN [11] N/A ∼ (2122, 4242)
Ours (162, 320) (2562, 5120)

TABLE I
INPUT AND OUTPUT MESH’S SIZE FOR ALL METHODS IN THE STUDY.

4) Training: We train our model for 45 epochs using Adam
optimizer [39] with a constant learning rate of lr = 1e−4. We
use 64 images per batch, which give us a training time of
about 96 hours on two Nvidia v100 GPUs.

We set the Chamfer loss’ weight to λCD = 1, and the
edge regularization loss’ weights to λ0,1

E = 0.05, λ2,3
E = 0.1 ,

λ4,5
E = 0.2 to compensate for the bigger size of the predicted

meshes at the first steps.
We report details about the input and output meshes for all

the baselines in Tab. I. The input images have a resolution
of 224x224. We normalize the images with the full dataset’s
mean and standard deviation. The model begins deforming an
initial triangular mesh representing a sphere with 162 vertices
and 320 faces.

B. Results and Discussion

We show the main results from our experiments in Tab.
II, and Tab. III. The experiments demonstrate that following
the level sets on our deformation strategy outperforms the
Pixel2Mesh baseline in the metrics that compare the predic-
tion’s accuracy to the target object. Note that some categories
have low self-intersection ratios of less than 10% faces, and
normal consistency achieves significantly higher values than
the state-of-the-art, especially compared to Pixel2Mesh.

Starting from a coarser mesh and adding more graph convo-
lutional layers on the base implementation of Pixel2Mesh also
aids in reducing the self-intersections. We believe this occurs
due to the significantly lower resolution of the input meshes
in Pixel2Mesh with five stages. As shown in Tab. I and Fig.
6 in the supplementary material. Notice that in this case, self-
intersections are unlikely to appear in the first stages of the



Full Test Set No Holes Test Set
CD(↓) F1τ (↑) F12τ (↑) Normal Self. inter. CD(↓) F1τ (↑) F12τ (↑) Normal Self. inter.

consist. length ratio consist. length ratio

P2M [8] 0.560 60.58 74.31 0.723 9.31 0.271 0.542 60.94 74.99 0.775 7.22 0.234
P2M, 5 stages 0.541 61.59 75.02 0.737 5.64 0.106 0.5174 62.16 75.69 0.798 2.47 0.050
MeshRCNN [11] 0.492 64.62 77.60 0.708 5.32 0.097 0.474 65.93 78.68 0.759 2.70 0.061
Ours 0.476 64.70 77.75 0.741 9.37 0.168 0.461 65.44 78.60 0.797 6.29 0.122

TABLE II
SINGLE-IMAGE TO 3D RECONSTRUCTION RESULTS. WE SHOW CHAMFER DISTANCE, F1-SCORE, AND NORMAL CONSISTENCY TO EVALUATE THE

ACCURACY OF THE PREDICTIONS. WE REPORT SELF-INTERSECTION LENGTH AND RATIO TO EVALUATE THE MANIFOLDNESS OF THE FINAL MESHES.

P2M P2M, 5 stages MeshRCNN Ours
Category F1τ (↑) Normal S. I. F1τ (↑) Normal S. I. F1τ (↑) Normal S. I. F1τ (↑) Normal S. I.

consist. ratio consist. ratio consist. ratio consist. ratio

bench 59.47 0.742 0.22 60.42 0.763 0.045 64.89 0.736 0.066 73.87 0.805 0.088
chair 53.57 0.765 0.225 55.96 0.795 0.036 59.63 0.746 0.053 68.03 0.820 0.093
lamp 57.10 0.685 0.454 58.42 0.715 0.214 61.48 0.690 0.109 67.79 0.730 0.342
speaker 52.52 0.830 0.147 52.49 0.846 0.021 59.18 0.776 0.035 65.28 0.866 0.046
firearm 60.31 0.641 0.392 62.16 0.653 0.142 61.69 0.635 0.079 67.36 0.678 0.269
table 68.29 0.774 0.169 69.32 0.796 0.043 74.03 0.775 0.073 79.32 0.812 0.126
watercraft 55.53 0.698 0.347 58.44 0.715 0.075 57.2 0.683 0.068 65.04 0.756 0.121
plane 64.44 0.687 0.465 66.48 0.704 0.119 65.85 0.675 0.096 64.23 0.732 0.258
cabinet 62.78 0.825 0.155 62.46 0.840 0.011 70.82 0.796 0.033 67.59 0.866 0.028
car 66.25 0.824 0.159 65.81 0.845 0.028 72.42 0.779 0.033 76.48 0.843 0.035
monitor 54.46 0.814 0.246 55.05 0.839 0.029 57.98 0.772 0.048 66.80 0.850 0.058
couch 55.21 0.806 0.155 55.72 0.825 0.015 58.61 0.777 0.033 69.46 0.858 0.024
cellphone 66.15 0.866 0.244 68.98 0.897 0.009 72.18 0.843 0.04 82.29 0.915 0.027
mean 60.94 0.775 0.234 62.16 0.798 0.050 65.93 0.759 0.061 73.44 0.820 0.112

TABLE III
RECONSTRUCTION RESULTS PER CATEGORY ON THE ZERO-HOLE SHAPES FROM SHAPENET DATASET. WE REPORT PER-CATEGORY AVERAGE OF EVERY

F1-SCORE, NORMAL CONSISTENCY, AND THE SELF-INTERSECTION RATIO METRICS.

extended Pixel2Mesh, which carries on to the last stage. The
low amount of self-intersections occurs at the expense of the
reconstruction accuracy because Pixel2Mesh assumes that the
resulting mesh is already a good approximation of the target
shape after the first deformation stage. A good approximation
of the target shape will not likely be the case with such low
resolution. We therefore conclude that our method achieves
better reconstruction performance than all baselines while
maintaining a relatively low self-intersection ratio.

Tab. III shows per-category reconstruction metrics. In this
experiment, we only use shapes with no holes. We report
the average F1-score, normal consistency, and self-intersection
ratio per class. We bring attention to several categories, such as
cabinet, couch, or monitor, where the self-intersection occurs
– on average – in less than 10% of the faces. Additionally, we
outperform Pixel2Mesh in all metrics and achieve competitive
results compared with MeshRCNN. In all cases, the normal
consistency was superior to Pixel2Mesh with no modifications
and MeshRCNN. Note that our approaches do not use any
normal consistency regularization. Thus, we can attribute the
higher accuracy of this metric to the smooth deformation
through the level sets.

We present qualitative results in Fig. 2. Our results show
an increase in accuracy to approximate the ground truth shape
while maintaining a relatively low amount of self-intersecting

faces.
Additionally, we include Fig. 3 to visualize how our method

progressively deforms the vertices from the initial spherical
mesh through all the stages in our model. The figure shows
how the predicted meshes evolve while adopting the shape of
the level sets at each step. The meshes get closer to the target
shape following a smooth transformation.

V. CONCLUSIONS

We presented Level Set Mesher, a single-image to 3D
reconstruction method that learns to predict 3D shapes by pro-
gressively deforming an initial surface constrained to follow
the target shape’s SDF level sets. We modeled our method as a
Multi-head Attention Network, which allowed us to compute
the deformation at each vertex as a weighted combination
of features in neighbor vertices. Our strategy proved to be
effective for 3D reconstruction by improving the accuracy
of the predicted shapes while also capturing fine details and
reducing artifacts such as self-intersections.
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Fig. 2. Qualitative results of the final predictions in the test set. The predicted meshes were rendered highlighting the self-intersecting faces in red. Our
approach achieves greater accuracy w.r.t the ground truth meshes with a relatively low ratio of self-intersections.

Fig. 3. Evolution of the predicted meshes (test set) until the predictions match the target shape (right). Note how our approach follows a smooth deformation
such that self-intersections only appear in the last stages.
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I. ABLATION STUDY

In this ablation study, we compare the results of our full
model with a version wherein we replace the multi-head graph
attention network with a regular graph convolution of the same
capacity. We show the results in Tab. IV.

II. LEVEL SET SAMPLING

We follow an Octree-based strategy to sample points on
the l-level set of a shape’s SDF. First, we sample points on a
regular grid where each grid cell has a side of s0 = 0.75.
Recall that we use level sets inside of a cube of side 3
surrounding the shape. We sample the SDF at all grid cell
centers c. If |c − l| <=

√
2s20, we conclude that cell c

potentially contains a level-set point, otherwise we discard the
cell. If this condition is true, we proceed to subdivide the
cell into eight new ones and apply the condition again for
sk = 1

2sk−1. The algorithm stops when sk < ϵ for a user-
defined ϵ. We depict the process in Fig. 4.

III. FACE SUBDIVISION STRATEGY

In our architecture, we split each face in each mesh into four
smaller faces during steps 2 and 4. We do the subdivision using
a Mid-edge subdivision scheme [34], [35]. We split each face
into four different faces by creating new vertices at the center
of each edge. New edges form by connecting the new vertices
and keeping both halves of the original edges. The process is
depicted in Fig. 5.

IV. INPUT MESHES

In Tab I, we reported the input and output mesh sizes for
all methods in the study. Note that we use the same input
and output size in our method as in Pixel2Mesh. Additionally,
note that we started from a coarser mesh for the Pixel2Mesh
with five stages comparison. In Fig. 6, we show an example
of the initial meshes as a way to visualize the resolution at

Fig. 4. Level-set sampling strategy. We progressively sample points on the
level-sets by using an Octree-based strategy. Red dots are sampled points in
the first iteration. Yellow dots are points sampled in the second iterations, just
on cells that potentially contain level-set points.

Fig. 5. Subdivision strategy. Every faces split in four through new vertices
inserted at mid-edge points.

different stages of the deformation. We show average values
for MeshRCNN because the output mesh’s size depends on
applying the marching cubes algorithm on the 48x48 vox-
elized initial prediction. There is no face subdivision in the
MeshRCNN architecture.

V. NUMBER OF LEVEL SETS

Note that our method converges to a continuous deformation
following the SDF gradient field if we use infinite intermediate
layers and infinite level sets in the loss function. However, such
scenario is impossible to model. Therefore, it is necessary to
follow discrete steps to learn a model that approximates the
flow. We chose seven different level sets in our study due to
empirical criteria:

1) We desire to maximize the number of layers to create
a model deep enough to learn the problem’s complex
patterns. We believe that more layers (and thus more
level sets) are preferable to approximate the ground truth
V .

2) Computational resources constrain us given the known
memory limitation of Graph Neural Networks. This



Full Test Set No Holes Test Set
CD(↓) F1τ (↑) F12τ (↑) Normal Self. inter. CD(↓) F1τ (↑) F12τ (↑) Normal Self. inter.

consist. length ratio consist. length ratio

Full model 0.368 71.26 82.82 0.761 10.83 0.149 0.353 73.44 84.34 0.820 7.23 0.112
No MGAN 0.369 70.45 82.56 0.77 10.99 0.180 0.3613 71.56 83.52 0.825 8.26 0.143

TABLE IV
ABLATION STUDY TO SHOW THE CONTRIBUTION OF THE DIFFERENT ELEMENTS OF OUR NETWORK.

Fig. 6. Illustrative example describing the size and quality of the input meshes. All the meshes derive from an icosahedron whose vertices have been projected
to the surfaces of a unit sphere. We use the face subdivision strategy to produce the input meshes in subsequent levels.

limitation prevents us from predicting meshes with a
large number of vertices, and prevents us from to using
a large number of level sets.

3) We chose a number of stages that could represent the
critical level sets where the vector field starts ”curving”
to reveal more fine details.

Consequently, we have placed the level sets at exponentially
at intervals of decreasing length. This was done because outer
level sets only hold general cues on the shape, whereas the
inner level sets reveal more refined details.

VI. EVOLUTION VIDEOS

We provide a video of a ShapeNet model showing the evo-
lution of the mesh through the deformation process. This video
highlights the need for a vector field-guided mesh deformation
in our level set formulations. In the video, we show our method
in comparison with Pixel2Mesh. Note that a) our method
smoothly deforms the initial mesh until it converges to the

surface of the 3D shape, and b) we avoid self-intersections and
topology artifacts in the final predictions. We have provided
the video as an attachment of this supplementary material.

VII. SELF-INTERSECTION METRICS

This section provides the mathematical definition of the
two metrics we use to assess the quality/manifoldness of the
predicted meshes: Self-intersection length and self-intersection
ratio.

Recall that two planes in 3D intersect in a straight line.
Consider now two faces Fi and Fj from the same triangular
mesh with face normals ni, nj ∈ R3 respectively. We can find
the line Q spanned by the intersection of the two faces’ planes
by solving [

n⊺
i −n⊺

i · Pi
n⊺
j −n⊺

j · Pj

]
x
y
z
1

 =

[
0
0

]
(9)



where Pi is any point inside triangle i (including the vertices).
Note that Eq. 9 has one degree of freedom which corresponds
with the free parameter of Q. We define the self-intersection
length as the segment of Q that is simultaneously contained
within the two triangles. We define the self-intersection rate
as the ratio of intersecting faces over the total number of faces
in the mesh.
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