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Abstract— Aerial operation in turbulent environments is a
challenging problem due to the chaotic behavior of the flow.
This problem is made even more complex when a team of aerial
robots is trying to achieve coordinated motion in turbulent wind
conditions. In this paper, we present a novel multi-robot con-
troller to navigate in turbulent flows, decoupling the trajectory-
tracking control from the turbulence compensation via a nested
control architecture. Unlike previous works, our method does
not learn to compensate for the air-flow at a specific time and
space. Instead, our method learns to compensate for the flow
based on its effect on the team. This is made possible via a deep
reinforcement learning approach, implemented via a Graph
Convolutional Neural Network (GCNN)-based architecture,
which enables robots to achieve better wind compensation by
processing the spatial-temporal correlation of wind flows across
the team. Our approach scales well to large robot teams —as
each robot only uses information from its nearest neighbors—,
and generalizes well to robot teams larger than seen in training.
Simulated experiments demonstrate how information sharing
improves turbulence compensation in a team of aerial robots
and demonstrate the flexibility of our method over different
team configurations.

I. INTRODUCTION

Aerial vehicles naturally have to operate in environments
with windy conditions. The wind field directly affects the
vehicle’s motion, potentially leading it outside its desired
trajectory or even to crash. Navigating in windy conditions
is even more difficult when air-flow is turbulent, presenting
a chaotic behavior with hard-to-predict changes in pres-
sure and flow velocity. This challenge is exacerbated in
aerial multi-robot scenarios where a team of robots has
to perform coordinated tasks which might require staying
within communication range without colliding with one
another. However, operating multi-robot systems in turbulent
environments is highly relevant to reducing delivery and
transportation delays, as well as supporting search and rescue
operations during natural disasters from storms, tornadoes,
and hurricanes.

The existing robotics literature has studied the problem
of navigation flows, relying on assumptions to make the
problem tractable. While some approaches assume a known
(static or dynamic) wind field, e.g., [1], [2], [3], other
methods learn an association between a location in the
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Fig. 1: A team of 36 robots navigating in turbulent wind. The robots
are trying to maintain a square formation using only a trajectory-
tracking controller. Blue arrows show the wind vector field. The
red dot shows the target location of the bottom-left robot in the
formation.

environment and the effect of the flow [4], [5]. These are
relevant limitations because it does not allow the robots to
reuse their learned information in turbulent flows where such
associations are constantly evolving or being faced with a
new or unknown environment.

In Fig. 1, we show an aerial multi-robot system operating
in a turbulent wind flow. This figure illustrates a key ob-
servation: sensory information sharing between the robots
can provide valuable information to improve the robots’
turbulence compensation in the absence of predictive wind-
flow maps. For example, the approach of a new wind front
could be detected by a robot, which can then relay pertinent
information to other robots to better compensate the wind.
This essentially occurs because the rapid fluctuations in wind
velocity and direction inherent to turbulent winds are spatio-
temporally correlated across the region.

The primary contribution of this paper is a novel method
for trajectory tracking in turbulent flows using multiple aerial
vehicles equipped with sensors to measure wind pressure
and relative distance to other robots. Specifically, our method
leverages structured information sharing over a graph where
robots represent nodes and communication between robots



represents edges. To ensure generality over qualitatively
different turbulent flows, we develop a deep reinforcement
learning approach, implemented via a Graph Convolutional
Neural Network (GCNN). Our approach learns to fuse and
transform sensory information received from neighbors [6]
in order to compensate for wind forces.

Crucially, our method does not need to learn to map
between a specific location and the wind flow. Instead, it
leverages spatio-temporal correlations (as described by the
Navier-Stokes equations [7]) in wind flow between team
members. Our method ensures that the learned information
will not be associated with a specific training environment
or trajectory. Furthermore, this ensures a decoupling between
the nominal trajectory tracking controller and the controller
for turbulence compensation.

Our approach is scalable due to the use of the GCNN
because each robot only uses the information from its on-
board sensors and the information of its neighbors in the
communication graph. Our experiments demonstrate this
scalability as well as the efficacy of the proposed approach.
These experiments also offer insights into how the learned
models leverage shared information among the robots for
effective turbulence compensation.

Related Work: The original robotic navigation problem in
windy environments was proposed by Zermelo in 1931 [8].
When modeling the flow as a vector field, some works
assume that the flow is known and quasi-static, i.e., does not
change in time and space. These works focus on developing
planning methods for static vector fields [1], [2], and spatio-
temporal dynamic fields [3]. However, those methods rely
on knowing the vector field at the planning stage, which is
unpredictable for turbulent flows.

For unknown static flows, the works in [9], [10] design
robot navigation strategies that drive the robot to sweep the
environment and create a map of the flow. In [11], the authors
designed an adaptive controller for a quadrotor that models
the flow as two parts: 1) a time-varying vector field that
can be estimated and 2) an unknown speed-bounded flow
that is assumed as noise. Flow prediction is also studied and
implemented in realistic settings [12], [13]. Similar to the
aforementioned works, however, they involve a large number
of samples of the environment.

For unknown dynamics of the flow, learning approaches
have shown promising results. A safe learning approach
for a quadrotor is presented in [14]. Assuming the flow is
static, the robot starts in a safe region that can be expanded
as the learning process evolves. The work in [4] presents
an adaptive flight control that learns how to track a given
trajectory on a static flow. A reinforcement learning approach
to navigate a static wind field is presented in [5].

As discussed in the introduction, our method does not need
to create associations between locations in the environment
and the wind flow. Towards this end, we leverage Graph
Convolutional Neural Networks (GCNNs) [6], [15]. They are
effective at modeling associations within a graph and have
been applied in a wide range of fields, including multi-robot
coordination and decision making e.g., [16], [17].

II. PROBLEM STATEMENT

Robot Team: Consider a team of n aerial robots, denoted
by the set V = {1, ..., n}. Assuming that all robots are at
the same height, we analyze their location and motion on
the plane. The position of each robot i ∈ V is denoted by
ri ∈ R2. We define the state vector by the position and the
velocity of the robot, i.e, xi = [r>i , ṙ

>
i ]>. We assume all

robots are homogeneous and have the same mass m. Each
robot i can use its local sensors to estimate its state as well as
select variables of the environment. Each robot can generate
a force vector f i ∈ R2 as control input, i.e.,

f i = ui. (1)

For this formulation, our aerial vehicles can be a fully
actuated hexarotor [18] or an under-actuated quadrotor that
tilts to generate a force in any direction [19]. Each robot i
can exchange messages with its k nearest robots denoted by
Ni. At every time step, each robot communicates its state
and information from on-board sensors.

Wind field: Our robot team operates in a windy environment
W ⊂ R2. We represent the wind’s velocity at a time t and
a location ri ∈ W as a vector-valued function w : R≥0 ×
R2 → R2. The vector field follows the dynamics of a fluid,
described by the incompressible Navier-Stokes equations [7]

∇ ·w = 0

ẇ +w · ∇w = −∇p+
1

Re
∇2w, (2)

where Re is the flow’s Reynolds number, and p is the
scalar pressure field. The Reynolds number measures the
ratio between inertial and viscous forces. It characterizes flow
patterns in a fluid, e.g., at low Re, flows tend to be dominated
by laminar flow, while at high Re, flows tend to be turbulent.
In this work, we focus on turbulent environments with high
Reynolds numbers [20], Re ≥ 4×103, in the flow dynamics
(2). Note that this type of turbulent environment has not been
explored in the mobile robotics literature.

As a robot moves through the air, the wind exerts a drag
force on the robot in the fluid’s direction [21]. We compute
the drag force as

fdrag =
1

2
ρ‖w‖2Cd A ŵ, (3)

where ρ is the air density, the operator ‖·‖ is the 2-norm, Cd
is the robot’s drag coefficient, A is the cross-sectional area,
and ŵ is a unit vector in the direction of w. In this context,
the reference area is the orthogonally projected frontal area,
i.e., the object’s visible area as seen from a point on its line
of travel. We assume that the drag coefficient and the air
density are constant.

Sensors: The robots in our team do not know the wind field
nor any of the coefficients in (3). However, they can use
their equipped sensors and noisy measurements to gather
information about their surroundings. Each robot is equipped
with a pressure sensor, a location sensor, and an inertial
measurement unit (IMU). The IMU estimates the robot’s
linear velocity. The robot can measure the relative distance to



their k-nearest neighbors using any relative location system,
e.g., camera, LIDAR, sonar, or time of flight (ToF) sensor.

Robot dynamics: The robot’s actuation and the turbulent
wind generate linear forces that determine the robot’s motion.
We model the dynamics of the ith robot using Newton’s
equation,

mr̈i = ui + fdragi . (4)

Trajectory tracking: The goal for the robot i is to follow a

given trajectory xdt = [rd>t , ṙd>t ]>, specified by a desired
location rdi and desired velocity ṙdi in a time interval
[0, tf ] [22]. Assuming an environment without wind, i.e.,
fdragi = 0 in (4), we can use a classical trajectory-tracking
approach that provides exponential stability [23] based on a
feed-forward controller,

utti = Kp(r
d
i − ri) +Kd(ṙ

d
i − ṙi) + r̈di , (5)

where Kp and Kd are the diagonal gain matrices. The main
challenge here is that fdragi is not negligible and can drive
the robot far away from the given trajectory, thereby making
the dynamical system in (4) unstable.

Objective: Our objective is to allow the robot team to track a
trajectory while operating in a dynamic, turbulent wind field.
We, therefore, need to solve the following:

Problem 1: Given a set of n robots and a trajectory that
can be solved with a control policy utti , which does not
consider turbulence, find a control input ui such that the
robots can perform the given task in a turbulent environment.
Our key insight is that although the robots do not know the
wind field, each can share its state and sensor measurements
with neighboring robots. Sharing information allows each
robot to increase its knowledge about the working environ-
ment, leading to an action policy that effectively compensates
for the wind’s drag force.

Note that our approach is independent of the trajectory
tracking because we aim to learn the wind patterns indepen-
dently of the trajectory-tracking controller.

III. DEEP REINFORCEMENT LEARNING METHOD

Control Strategy: The key to our control strategy is de-
coupling the trajectory-tracking controller and the wind
compensation. Trajectory-tracking controllers already show
exponential convergence [19], [23]. However, convergence
is not guaranteed when an external force from the wind
is added to the dynamics as modeled in (4). To overcome
this limitation, we leverage Reinforcement Learning (RL) to
design a second controller that compensates for wind distur-
bances. This new controller forms an inner control loop, as
seen in Fig. 2, and assists the trajectory-tracking controller
by helping it converge as if operating in a disturbance-free
setting.

The force generated by a robot is the combination of
an RL-based wind compensation force frli and trajectory
tracking force f tti . So the total force generated by the robot
is ui = frli + f tti . Substituting the total force in (4), we
obtain

mr̈i = frli + f tti + fdragi . (6)

Fig. 2: Control diagram of our proposed method.

We set the trajectory-tracking force to be the control’s action
from (5), such that f tt = utti .

The purpose of the frli is to compensate for the effect
of the wind flow, thereby allowing the robots to track their
desired trajectory. To this end, let A be the action space
and S the state space in the RL context. We use a Deep-
RL policy – πθi (ai|si) – to compute a wind compensation
action for each robot. We parametrize the policy with a deep
neural network with parameters θ, conditioned on a set of
observed variables si ∈ S. Then, we set frl = ai where
ai ∼ πθi (ai|si).

We set the action space A to be [−fmaxrl , fmaxrl ]2 ⊂
R2, representing a two-dimensional bounded force. Unlike
classical RL methods, the ith robot’s policy depends on
all the states in the robotic team rather than just si. This
allows our method to use information across robots. Later in
this section, we will offer a precise definition of S and the
information-sharing architecture of our RL method.

In our method, we perform sampling and actuating peri-
odically. Consequently, we assume that the time is discrete,
i.e., t = 0, 1, 2, ..., and the time step ∆t is small enough to
apply our method in the dynamics equations in (6).

Soft Actor-Critic: We learn πθ(ai|si) using the Soft Actor-
Critic algorithm (SAC). SAC is an off-policy Deep Rein-
forcement Learning (DRL) algorithm based on entropy reg-
ularization to trade off exploitation and exploration policies.
SAC has demonstrated stability, sample-efficient learning,
and optimal policy convergence [24]. The SAC method
optimizes πθi by jointly maximizing its expected reward and
its entropy [24], [25]. Incorporating the entropy term into the
RL framework casts an optimization problem of the form

π∗i = arg max
π

E
τ∼π

[ ∞∑
t=0

γt

(
r(si,ai, s

′
i) + αH (π(·|si))

)]
,

(7)
where s′i is the state in the next time step after applying
the action ai, α is the trade-off coefficient, r is the reward
signal, γ is the discount factor, and H is the policy’s entropy.
The α values control the trade-off between the expected
reward and entropy of the policy, balancing exploration and
exploitation. Appropriate values of α accelerate the learning
process towards the optimal policy and prevent convergence
to local minima [24].

Following (7), SAC uses a Deep Q-Learning strategy
that incorporates H into a slightly modified version of the
Bellman equation for the value function

V (si) = E
ai∼π

[Q(si,ai)] + αH (π(·|si)) (8)



and the Bellman equation for the Q-function

Q(si,ai) = E
s′i∼P

[r(si,ai, s
′
i) + γV (s′i)] , (9)

where P is the probability distribution of the future state s′i.
In practice, SAC estimates three functions: The policy

(Actor) and two Q-functions (Critics). First, it approximates
the policy as a Gaussian distribution πθ ∼ N (µθ,Σθ). Both
µθ and Σθ are the outputs or a neural network parametrized
with θ and optimized through gradient descent using the re-
parametrization trick [26]. Similarly, SAC estimates two Q-
functions Qθ1

and Qθ2
as neural networks with parameters

θ1 and θ1, respectively. The Q-function networks train by
minimizing the objective JQ(θi)

E
(si,ai,s′i)∼D

[(
Qθj

(si,ai)− (r(si,ai) + γVθ1,θ2
(s′i))

)2]
(10)

over samples taken from a replay buffer D = S ×A×S of
experience gathered during multiple episodes in the training
process. The value function Vθ1,θ2 is implicitly defined
through the Q-function and the policy, as stated in [25].
Similarly, the objective for the Gaussian policy is given by

Jπ(θ) = E
si∼D,ai∼πθ

[
α logπθ(ai|si)− min

j∈{1,2}
Qθj

(si,ai)

]
.

(11)
Note that minimizing (10) is equivalent to finding the Q-
function that best approximates the value function V . Anal-
ogous, minimizing (11) is equivalent to jointly maximizing
the expected reward and the policy’s entropy.

In this work, we adapt the SAC method to optimize the
ith robot’s policy conditioned on all the robot states in the
team as opposed to a single agent state.

State space: Our approach does not focus on tracking the
trajectory but on learning how to directly compensate for
the disturbance experienced by the robots, such that the
trajectory-tracking controller can operate freely. For this pur-
pose, we integrate the dynamics in (6) to simulate the robot’s
dynamics under perfect conditions. In these conditions, there
is no drag force and hence no need for wind compensation.
Therefore, our RL approach’s state si ∈ S relates to how
much the trajectory-tracking state xi differs from a simulated
state xsimi . Note that xsimi does not consider the wind effect.

Let us denote the trajectory-tracking state of the ith robot
at a time t by xi[t], and its simulated state by xsimi [t].
Using Euler integration, we can predict the disturbance-free
state xsimi [t] using the past state xi[t− 1], and a trajectory-
tracking action utti [t − 1]. We can write the discrete-time
dynamics from (6) in matrix form, assuming fdrag = frl =
0, to compute the simulated state at the time t,

xsimi [t] = Axi[t− 1] +Butti [t− 1], (12)

where
A =

[
1 ∆t 1
0 1

]
, B =

[
0 0
0 ∆t

m 1

]
,

and ∆t is a small time step. Then, the wind disturbance
displacement vector is the difference between the current
state xi[t] and the simulated state xsimi [t],

ei[t] = xsimi [t]− xi[t]. (13)

As described in Sec. II, the wind applies a drag force fdragi

on the robots. This force results from the pressure field
gradient plus the friction forces due to air particles as
described by (2). Each robot takes noisy measurements of
the pressure field pi at its location to compensate for the
effect of these forces.

Finally, we define the state vector si for our RL method
at each robot i, by concatenating the displacement vector ei,
the pressure field value pi, and the robot’s velocity ṙi such
that

si = ei ‖ ṙi ‖ pi, (14)

where · ‖ · is the concatenation operator. We include the
robot’s velocity because the drag force directly affects this
quantity. During training, as discussed more in Sec. IV, we
add Gaussian noise to si to simulate real-world sensory
noise.

Graph Convolutional Neural Network Architecture: The
wind flow dynamics in (2) reveal a spatio-temporal cor-
relation for w, i.e., the wind velocity at a given location
correlates with the wind velocities at nearby areas. Our
proposed method takes advantage of the spatial correlation
by enabling information sharing between the robotic team
members. When we use multiple robots spatially distributed
in W , we form a sensing network that indirectly samples
information about the effects of the wind on the robots.
Consequently, we use this sensing network to improve the
action that compensates for the drag force exerted on a
robot i with the help of its neighbors Ni.

Since SAC was designed for a single agent, its actor’s
architecture is a multi-layer perceptron (MLP). An MLP
acts only on the individual robot’s states si to compute
the robot’s action ai. Hence, the MLP’s architecture does
not use information from other robotic team members. To
model this information exchange explicitly, we design the
actor – and the two critics – as Graph Convolutional neural
networks (GCNN) [27]. A L-layered GCNN is a type of
neural network that can process data represented as a graph
G = (N , E ,H) with nodes N , edges E , and a feature set
H = {H0, . . . ,HL}. In the context of this paper, the nodes
represent robots, and the edges represent the information
exchange between them. We present an overview of the
full architecture for our GCNN-based actor and the critic
in Fig. 3.

At a given layer l ∈ [0, ..., L], the network computes a
feature vector for each robot i, denoted by hli, and organizes
them into a n× cl matrix

H l = [hl1, ..,h
l
n]>.

We compute H l from the previous layer’s features following

H l+1 = σ
(
H lΘl

1 +AadjH
lΘl

2

)
, (15)

where Aadj is the adjacency matrix of the graph, Θl
1 and

Θl
2 are learnable weight matrices of size cl× cl+1, and σ(·)

is an element-wise non-linear activation function. We set the
input features of the network to be a matrix containing all
the robot’s states defined in (14), such that

H0 = [s1, ..., sn]>.



The operation in (15) denotes a graph convolution operation
where a robot’s features are updated using information from
its neighbors in the graph. However, this operation does not
include information about the relative position rij between
robot i and its neighbor j. Without the relative position, the
robots do not know where the neighboring robots are located.
This makes it difficult to approximate vector quantities such
as the pressure gradient in (2). To overcome this limitation,
we incorporate the relative position into the convolution
operator by concatenating ri,j to the features at each layer
right before the weighting and the neighbor aggregation. For
simplicity, we will use the per-node notation of (15) to denote
the convolution at each robot i. We incorporate the changes
to include the relative position and define the layer’s features
at each robot as

hl+1
i = σ

Θl
1h

l
i + Θl

2

∑
j∈N (i)

(
hlj || ri,j

) , (16)

where Θl
2 is now a cl+1×(cl+2) matrix. The actor’s GCNN

architecture takes H0 and Aadj as inputs, and computes a
latent vector representation hLi at the last layer L. To decode
hLi into the robot’s action, we pass hLi through an small
MLP network. We split the MLP’s output into µθi and Σθi ,
and we use them to parameterize πθ as a normal distribution.
Following [24], we set Σθi to be a diagonal matrix. Finally,
we use the policy to obtain the action ai.

Each of the critic’s architecture follows a similar design
with two small modifications since the critic is a function
Q : S × A 7→ R. First, the critic’s output is a single-value
function instead of a probability distribution. To model its
output properly, we modify the critic’s MLP decoder to have
a single output neuron rather than µθi and Σθi . Second, the
input space of the critic architecture consists of the robot’s
action in addition to just the state. Consequently, the input
to the critic’s GCNN is a feature vector

H0′
= [(s1 ‖ a1), ..., (sn ‖ an)]

>
.

In each architecture, we use a two-layer GCNN with ReLU
as the non-linear activation function and two hidden layers
of 64 neurons per layer. The MLP decoders are two-layer
networks of size 64 and 16, respectively. We add an extra
output layer to the decoders to re-shape the network’s output
to the appropriate size for the actor or critics. The MLP’s
layers use ReLU as their activation function in the inner
layers and a linear activation function for the output layer.
Finally, the actor’s output is squeezed into the range [−1, 1]
using a tanh function as described in the SAC formulation.
In practice, we scale ai by a preset factor of

√
2fmaxrl

representing the maximum force that the robots can generate,
as discussed after (6).

Reward Signal: The final component of our proposed
method is the reward signal. The reward signal at each step
tells the SAC how well the robots compensate for the wind’s
drag force at a given step in the training process.

Recall that we expect the robot team to learn to operate
the same as when there is no turbulence. Because turbulence
affects the acceleration of the robots, the divergence between

Fig. 3: Team-level architecture of the actor and critic networks used
within the proposed RL architecture.

the expected simulated velocity at a robot i and its actual
velocity is an appropriate quantity to incorporate into our
reward signal. We can do a similar analysis on the diver-
gence between the simulated position and the actual position
measured with the robot’s instruments. These divergence
quantities are captured into the displacement vector ei in
(13). Hence, we define our reward function for our RL
method as the L1-norm to weighted displacement,

r[t] = −‖β � ei‖, (17)

with � the Hadamard product, and β a weight vector rating
the importance of each component of ei in the reward signal.

As the displacement vector between the simulated state
and the actual state vector approaches the zero vector, the
reward signal becomes less negative. Therefore, learning a
policy that maximizes (17) is equivalent to learning an action
policy that compensates for the effect of the wind on the
robots.

IV. EXPERIMENTS

We design three experiments to evaluate our method’s
performance. First, we show that our method allows robots to
navigate turbulent wind regimes by independently compen-
sating the wind and tracking the target’s trajectory separately.
Second, we show that our method is robust to changes in the
robot team’s configuration, such as neighborhood size and
formation size. Third, we demonstrate that the advantages
of our method arise from our GCNN-based RL strategy by
ablating the GCNN and replacing it with an MLP.

Experimental Setup: We conduct all our experiments in
a 2-dimensional square simulation space W of size 10 ×
10 sq m. We simulate M = 60 wind fields w by solving
the Navier-Stokes equations inside W , with random initial
conditions. Each w is guaranteed to be in a turbulent regime
at Re ≥ 4 × 103. The turbulence intensifies with time in
all of our w, increasing the Re value as shown in Fig. 4.
We control the maximum possible wind speed in each wind
simulation and bound it to a value of 60 m/s. We generate the
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Fig. 4: Reynolds number (Re) evolution. In all of our wind
simulations, the value of Re increases as the wind becomes more
turbulent.

wind flows using a publicly available Computational Fluid
Dynamics (CFD) software [28], [29], [30]. We provide a
script to compute simulations along with the project’s source
code1. For each robot, we compute the drag force exerted by
the wind as per (3). We set the air density to ρ = 1.184 and
the drag coefficient to Cd = 0.47. Additionally, we assume
all of the robots are small spheres of radius r = 0.1m with
a cross-sectional area of A = πr2. We use lattice formations
in all of our experiments at different sizes and chose the
lattices’ initial location to fit entirely into W .

We train all our models on only 50 of the wind simulations
and reserve the remaining 10 for testing. We train each RL
model for 5 × 106 steps using a replay buffer of 2 × 105.
This replay buffer’s size ensures the RL model focuses more
on recent experiences where the reward is expected to be
better. We optimize the SAC’s loss functions from (10) and
(11) using Adam optimizer [31] with a fix learning rate of
1× 10−3. At training, all the episodes have a fixed duration
of T = 60 s. We set the weights in the reward to β =
[1, 1, 10, 10]. We use the k-nearest neighbor algorithm (knn)
to define the graph’s adjacency matrix at each time step. In all
of our experiments, we start the robot’s formation at random
locations within W . We report average absolute errors over
20 episodes with corresponding 95% accuracy confidence
intervals.

Experiment 1: Wind compensation. In this experiment,
we explore the benefits of assisting the trajectory-tracking
control from (5) with our RL method to compensate for the
force that a turbulent wind field exerts on a robot. To this
end, we compute the position and velocity errors at each
time t of the trajectory-tracking control with and without
the RL wind-compensation strategy. We use a formation size
of n = 25 robots and a neighborhood size of k = 12. We
report average errors over 20 episodes and all n robots in
the swarm and summarize the results in Fig. 5. Our method
(blue curve) shows a statistically significant improvement
compared to trajectory tracking only (green curve). Note
that our method maintains the position and velocity errors at
relatively stable values despite the increase in the turbulence
regime described in Fig. 4. From this result, we conclude that
our proposed method can capture and compensate for the
wind effects that affect the robots, regardless of the intensity
and complexity of the wind. Additionally, we report in Fig. 6

1https://github.com/dipaco/robot_formation_in_
turbulence
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Fig. 5: Our method’s performance compared to only the trajectory-
tracking control. The curves show the mean error across 20 episodes
with corresponding 95% confidence interval.
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Fig. 6: Magnitude of the control signal. Solid lines show the total
action signal for our method (blue) and only the trajectory-tracking
control (green). Additionally, we show the tracking-trajectory com-
ponent of our method (dotted blue).

the magnitude of the total control signal of each robot,
averaged over all the robots in the formation. Recall that the
total control signal from our proposed method is the sum
of trajectory-tracking control and the RL action as per (6).
The magnitude of the control signal is associated with the
amount of energy the robots use to complete their task. e.g.,
tracking a trajectory. By comparing the curves in Fig. 6,
we conclude that our method achieves significantly lower
errors with approximately the same control signal magnitude.
Hence, our methods preserve the amount of energy the robots
use to fulfill their tasks while achieving better performance.
Moreover, we report the trajectory-tracking component of
our method (dotted blue) and highlight the smoothness of the
curve compared to the trajectory-tracking alone. We conclude
that this occurs because the robots can track a target free of
perturbations when the RL compensates for the wind’s effect.

Experiment 2: Sensitivity Analysis. In this experiment, we
test our method’s sensitivity regarding two key parameters of
our model: the robot’s neighborhood size, k, and the number
of robots in the team, n.

We investigate the effect of the neighbor size on our
method’s ability to learn a wind compensation action. To

https://github.com/dipaco/robot_formation_in_turbulence
https://github.com/dipaco/robot_formation_in_turbulence
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Fig. 8: Sensitivity to the formation size.

this end, we train five models varying the neighborhood size
at increasing values of k, such that k = {2, 4, 8, 12, 16}, and
maintain the formation size constant at n = 25. We report the
average position error of each of these models in Fig. 7. Our
results show a decrease in the error when k increases. Note
that the error gap between curves with lower values of k and
curves with larger k increases with the turbulence intensity
(See Fig. 4). We did not observe a significant improvement
in performance for models trained with k > 12.

We train eight of our RL-based models, varying the train-
ing and testing formation size to test our method’s sensitivity
to the training formation. We use ntrain, ntest ∈ {32, ..., 102}
while maintaining the neighborhood size constant at k = 12.
We report the average position error of each test in Fig.
8. Note that our method scales well to large formation
when trained with enough robots without retraining, e.g.,
n ≥ 25. The performance decrease in the first two columns
results from testing on formations that do not satisfy the
neighborhood requirements when training the models, k =
12. Similarly, the two first rows in Fig. 8 show a decrease in
performance due to training with insufficient robots. In this
last scenario, the neighborhood cannot meet the requirements
to capture the wind dynamics.

Experiment 3: Ablation Study. We conduct an ablation
study to investigate the contribution of our proposed architec-
ture to the overall system. We compare our model with five
baselines to highlight the advantages of information sharing
in our model. In the first baseline, we replaced the GCNN
with an MLP shared across all robots in the team. The MLP
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Fig. 9: Ablation study results. Our method (blue curve) shows a
statistically significant improvement compared to all baselines.

has the same number of hidden layers and neurons but does
not share information with its neighbors. It can only access
the features of the nodes in which it is operating. The second
baseline is a deeper MLP of four hidden layers. The increase
in depth has the effect of approximately doubling the number
of weights. Similarly, the third baseline is a wider MLP
with a layer width of 128 neurons. Doubling the layer’s
width increases the number of weights in the base MLP by
approximately a factor of four.

We include a fourth baseline to test the ability of our model
to learn spatially distributed information from a robot’s
neighbor. In this baseline, we ablate the inclusion of the
relative position ri,j in the convolution definition of (16).
By removing the relative position, our GCNN can still share
information between a robot i and its neighbors. However,
the robot cannot identify where those neighbors are located
relative to itself. Finally, the last baseline is the trajectory-
tracking controller without our RL wind compensation. Our
experiments show that our approach achieves the lowest
position error among all methods in the ablation study. We
summarize all the ablation experiments in Tab. I and Fig. 9.
We report the average position error of each method along
the corresponding Re values along an episode. Note that all
the MLP-based baselines have similar error curves, despite
the significant increase in capacity of the Deeper and Wider
MLP. These results demonstrate that the advantages of our
method arise from our GCNN-based RL strategy and not
from the neural network’s size.

Discussion: Navigation in turbulent flows with high levels of
turbulence, Re > 4×106, is a challenging problem. However,
these high turbulence levels have not been studied in the
state-of-the-art. This scenario is especially challenging for a
single robot since its perception of the flow is limited. In
this paper, we leveraged multiple robots to navigate high-
turbulence flows and evaluate different factors that help un-
derstand the difficulties of operation in this type of aggressive
environment. Although the spherical robots we presented
only exist in simulations, our method can be implemented in
actual robots.

V. CONCLUSION AND FUTURE WORK

In this paper, we introduced a novel RL-based method
to control a team of aerial robots to track a trajectory
while working together in a dynamic, turbulent wind field.
Our method’s strategy decouples the trajectory-tracking con-
troller and wind compensation. So our method can learn to
compensate for the wind turbulence independently of the



Method Position Error

Time: 0s 10s 20s 30s 40 50s 60s
Re: 3.9× 106 4.3× 106 4.4× 106 5.6× 106 5.2× 106 5.3× 106 6.6× 106

Base MLP 0.092 ± 0.022 0.362 ± 0.065 0.338 ± 0.048 0.419 ± 0.072 0.414 ± 0.050 0.418 ± 0.073 0.591 ± 0.085
Wider MLP 0.105 ± 0.022 0.418 ± 0.076 0.340 ± 0.046 0.533 ± 0.053 0.405 ± 0.047 0.431 ± 0.051 0.607 ± 0.079
Deeper MLP 0.089 ± 0.014 0.367 ± 0.068 0.282 ± 0.051 0.438 ± 0.049 0.410 ± 0.039 0.457 ± 0.071 0.631 ± 0.084
Only trajectory tracking 0.282 ± 0.055 0.803 ± 0.156 0.699 ± 0.063 1.020 ± 0.132 0.939 ± 0.131 0.932 ± 0.152 1.325 ± 0.184

Ours - No rel. position 0.092 ± 0.011 0.287 ± 0.058 0.235 ± 0.030 0.325 ± 0.052 0.316 ± 0.043 0.340 ± 0.059 0.509 ± 0.081
Ours - Full model 0.128 ± 0.021 0.194 ± 0.027 0.173 ± 0.014 0.191 ± 0.025 0.228 ± 0.017 0.241 ± 0.041 0.311 ± 0.059

TABLE I: Quantitative results of the ablation study. The table shows the average position error along the duration of an episode. We
report the average Re at selected times.

motion controller. Our RL approach allowed us to find an
optimal policy to compensate for the wind force via a graph
neural network designed to share information among the
robotic team members. Our method shows that sharing sen-
sor measurements between nearby robots provides valuable
information to improve the robots’ turbulence compensation
and learn spatially-distributed wind patterns. We demonstrate
the advantages of our strategy through several simulations
strategically designed to test our method’s performance for
wind compensation, its scalability to large robot formations,
and its parameter sensitivity.

In future work, we want to design and implement a lab
testbed to generate air flows with high turbulence levels like
the ones presented in this paper. Although this type of testbed
has a high cost and complexity, it would allow us to test and
extend methods for navigation in high turbulence.

REFERENCES

[1] B. Garau, A. Alvarez, and G. Oliver, “Path planning of autonomous
underwater vehicles in current fields with complex spatial variability:
an a* approach,” in Proceedings of the 2005 IEEE international
conference on robotics and automation. IEEE, 2005, pp. 194–198.

[2] E. Bakolas and P. Tsiotras, “Time-optimal synthesis for the zermelo-
markov-dubins problem: the constant wind case,” in Proceedings of
the 2010 American Control Conference. IEEE, 2010, pp. 6163–6168.

[3] M. Otte, W. Silva, and E. Frew, “Any-time path-planning: Time-
varying wind field + moving obstacles,” in 2016 IEEE International
Conference on Robotics and Automation (ICRA), 2016, pp. 2575–
2582.

[4] M. Bisheban and T. Lee, “Geometric adaptive control for a quadrotor
uav with wind disturbance rejection,” in 2018 IEEE Conference on
Decision and Control (CDC). IEEE, 2018, pp. 2816–2821.

[5] C. Montella and J. R. Spletzer, “Reinforcement learning for au-
tonomous dynamic soaring in shear winds,” in 2014 IEEE/RSJ In-
ternational Conference on Intelligent Robots and Systems. IEEE,
2014, pp. 3423–3428.

[6] F. Gama, E. Isufi, G. Leus, and A. Ribeiro, “Graphs, convolutions, and
neural networks: From graph filters to graph neural networks,” IEEE
Signal Processing Magazine, vol. 37, no. 6, pp. 128–138, 2020.

[7] C. Foias, O. Manley, R. Rosa, and R. Temam, Navier-Stokes Equations
and Turbulence, ser. Encyclopedia of Mathematics and its Applica-
tions. Cambridge University Press, 2001.
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